Basic concepts in string theory, R. Blumenhagen, D. Lüst, S. Theisen (Springer): Errata

Harold Erbin*1
${ }^{1}$ Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany

29th June 2019

Colors red and blue are respectively used to highlight the error and its correction (if necessary).

26/07/2017

- p. 205 below eq. (8.34): "built on the $|\bar{a}\rangle$ ground state" $\rightarrow|\dot{a}\rangle$
- p. 208 sec. 8.4 §1: "The ghost action was than" \rightarrow then
- p. 233 above eq. (9.24): "Expressing ψ^{\prime} though $\psi " \rightarrow$ through

29/06/2019

- p. 8, eq. (2.3): $\dot{x}^{2}=\eta_{\mu \nu} x^{\mu} x^{\nu} \rightarrow \dot{x}^{2}=\eta_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}$
- p. 18, eq. (2.43): $\left(\xi, P^{\dagger} t_{0}\right)=\left(P \xi, t_{0}\right) \rightarrow\left(\xi \mid P^{\dagger} t_{0}\right)=\left(P \xi \mid t_{0}\right)$, for consistency with chapter 6
- p. 19, eq. (2.50):

$$
4 \partial_{+} \partial_{-} X^{\mu}=0 \quad \longrightarrow \quad-4 \partial_{+} \partial_{-} X^{\mu}=0
$$

- p. 50 , eq. (3.58): $X^{\mu}(l-\sigma, \tau) \rightarrow X^{\mu}(\ell-\sigma, \tau)$
- p. 27, eq. (2.93):

$$
\int_{0}^{\pi} \mathrm{d} \sigma \quad \longrightarrow \quad \int_{0}^{\ell} \mathrm{d} \sigma
$$

- p. 66 , eq. (4.12):

$$
\phi_{\text {plane }}(z)=\sum_{n \in \mathbf{Z}} \phi_{n} z^{-n-h} \quad \longrightarrow \quad \phi_{\text {plane }}(z)=\sum_{n+h \in \mathbf{Z}} \phi_{n} z^{-n-h}
$$

in view of comment below (4.13) (another possibility is to not write yet the range of the sum). Should eq. (4.11) also be fixed?

- p. 71, eq. (4.38): "Comparing Eq. (4.58b) with Eq. (4.9)" \rightarrow (4.37)
- p. 70, 74: the definition of the adjoint is confusing: (3.34) looks incompatible with (4.55), and the definition $\left\langle\phi_{\text {out }}\right|$ as the adjoint of $\left|\phi_{\text {in }}\right\rangle$ (to compare with [2, p. 203]).

[^0]- p. 79, below eq. (4.45): "For a given s " $\rightarrow c$
- p. $88, \S 1$; p 109 , below eq. (5.13): " $S L(2, \mathbb{Z})$ vacuum invariant vacuum" $\rightarrow S L(2, \mathbb{C})$
- p. 90, eq. (4.126):

$$
\oint \frac{\mathrm{d} z}{2 \pi i} i \partial X^{\mu}(z): \mathrm{e}^{i k \cdot X(z, \bar{z})}: \quad \longrightarrow \quad \oint \frac{\mathrm{d} w}{2 \pi i} i \partial X^{\mu}(w): \mathrm{e}^{i k \cdot X(z, \bar{z})}:
$$

- p. 114, eq. (5.38): I am not sure if $\left\{Q_{B}, c_{n}\right\}$ is correct ${ }^{1}$
- p. 128 , below eq. (6.12): extraneous tab
- p. 141-2: The integral is written over the moduli space \mathcal{M}_{g}, but I would expect \mathcal{T}_{g} instead, as defined in (6.47) above ($[1,(14.95)]$ for comparison). Then, I would expect to see \mathcal{M}_{g} instead of \mathcal{F}_{g} (which has not been defined anywhere before its use), except if one wants to stress that any region equivalent to \mathcal{M}_{g} would be fine.
The two next points include the correction $\mathcal{M}_{g} \rightarrow \mathcal{T}_{g}$ (but not $\mathcal{F}_{g} \rightarrow \mathcal{M}_{g}$).
- p. 141, eq. $(6.52,54)$:

$$
\int_{\mathcal{M}_{g}} \prod_{i} \mathrm{~d} \tau_{i}^{2} \quad \longrightarrow \quad \int_{\mathcal{T}_{g}} \prod_{i} \mathrm{~d}^{2} \tau_{i}
$$

- p. 142 below eq. (6.54): "we can replace $\frac{1}{|\mathrm{MCG}|} \int_{\mathcal{M}_{g}} \prod_{i} \mathrm{~d} \tau_{i}$ by an integral over a fundamental region." \rightarrow "we can replace $\frac{1}{|\mathrm{MCG}|} \int_{\mathcal{T}_{g}} \prod_{i} \mathrm{~d}^{2} \tau_{i}$ by an integral over a fundamental region \mathcal{F}_{g}."
- p. 142 , eq. (6.55): $\mathrm{d} \tau_{i} \rightarrow \mathrm{~d}^{2} \tau_{i}$
- p. 143, eq. (6.62):

$$
\int_{\mathcal{F}_{g}} \mathrm{~d}^{2} \prod_{i} \tau_{i} \quad \longrightarrow \quad \int_{\mathcal{F}_{g}} \prod_{i} \mathrm{~d}^{2} \tau_{i}
$$

- p. 160, eq. (6.120):

$$
\widetilde{\mathcal{A}}=\cdots \mathrm{e}^{i \theta\left(L_{0}-\bar{L}_{0}\right)}|B\rangle \quad \longrightarrow \quad|A\rangle
$$

- p. 510, eq. (14.262):

$$
\delta e^{a}=\Lambda^{a}{ }_{b} \mathrm{e}^{a} \quad \longrightarrow \quad \delta e^{a}=\Lambda^{a}{ }_{b} \mathrm{e}^{b}
$$

- p. 591, above eq. (16.8): $\alpha_{-1}^{\mu} \bar{\alpha}_{-1}^{\nu}|k\rangle \rightarrow \bar{\alpha}_{-1}^{\mu} \alpha_{-1}^{\nu}|k\rangle$ for consistency with eq. (16.8)
- p. 592, §1: "e.g. $\epsilon_{\mu \nu}^{(D)} \epsilon^{(G) \mu \nu}=0$ for $G=h, B$ "
- p. 690 , below eq. (18.26): $\tilde{F}_{(p+2)}^{2}=\tilde{F}_{M_{0} \ldots M_{p+2}} \tilde{F}^{M_{0} \ldots M_{p+2}} \rightarrow \tilde{F}_{M_{0} \ldots M_{p+1}} \tilde{F}^{M_{0} \ldots M_{p+1}}$

References

[1] M. Nakahara. Geometry, Topology and Physics. 2nd edition. Institute of Physics Publishing, June 2003.
[2] J. Polchinski. String Theory: Volume 1, An Introduction to the Bosonic String. Cambridge University Press, June 2005.

[^1]
[^0]: *harold.erbin@physik.lmu.de

[^1]: ${ }^{1}$ See https://physics.stackexchange.com/questions/280864.

