Basic concepts in string theory, R. Blumenhagen, D. Lüst, S. Theisen (Springer): Errata

Harold Erbin^{*1}

¹Arnold Sommerfeld Center for Theoretical Physics, Ludwig–Maximilians–Universität München, Theresienstraße 37, 80333 München, Germany

29th June 2019

Colors red and blue are respectively used to highlight the error and its correction (if necessary).

26/07/2017

- p. 205 below eq. (8.34): "built on the $|\bar{a}\rangle$ ground state" $\rightarrow |\dot{a}\rangle$
- p. 208 sec. 8.4 §1: "The ghost action was than" \rightarrow then
- p. 233 above eq. (9.24): "Expressing ψ' though ψ " \rightarrow through

- p. 8, eq. (2.3): $\dot{x}^2 = \eta_{\mu\nu} x^{\mu} x^{\nu} \to \dot{x}^2 = \eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}$
- p. 18, eq. (2.43): $(\xi, P^{\dagger}t_0) = (P\xi, t_0) \rightarrow (\xi|P^{\dagger}t_0) = (P\xi|t_0)$, for consistency with chapter 6
- p. 19, eq. (2.50):

$$4\partial_+\partial_-X^\mu = 0 \quad \longrightarrow \quad -4\partial_+\partial_-X^\mu = 0$$

- p. 50, eq. (3.58): $X^{\mu}(l \sigma, \tau) \to X^{\mu}(l \sigma, \tau)$
- p. 27, eq. (2.93):

$$\int_0^{\pi} \mathrm{d}\sigma \quad \longrightarrow \quad \int_0^{\ell} \mathrm{d}\sigma$$

• p. 66, eq. (4.12):

$$\phi_{\text{plane}}(z) = \sum_{n \in \mathbf{Z}} \phi_n z^{-n-h} \longrightarrow \phi_{\text{plane}}(z) = \sum_{n+h \in \mathbf{Z}} \phi_n z^{-n-h}$$

in view of comment below (4.13) (another possibility is to not write yet the range of the sum). Should eq. (4.11) also be fixed?

- p. 71, eq. (4.38): "Comparing Eq. (4.58b) with Eq. (4.9)" \rightarrow (4.37)
- p. 70, 74: the definition of the adjoint is confusing: (3.34) looks incompatible with (4.55), and the definition $\langle \phi_{out} |$ as the adjoint of $|\phi_{in}\rangle$ (to compare with [2, p. 203]).

^{*}harold.erbin@physik.lmu.de

- p. 79, below eq. (4.45): "For a given s" $\rightarrow c$
- p. 88, §1; p 109, below eq. (5.13): " $SL(2,\mathbb{Z})$ vacuum invariant vacuum" $\rightarrow SL(2,\mathbb{C})$
- p. 90, eq. (4.126):

$$\oint \frac{\mathrm{d}z}{2\pi i} \, i\partial X^{\mu}(z) : \mathrm{e}^{ik \cdot X(z,\bar{z})} : \longrightarrow \oint \frac{\mathrm{d}w}{2\pi i} \, i\partial X^{\mu}(w) : \mathrm{e}^{ik \cdot X(z,\bar{z})} :$$

- p. 114, eq. (5.38): I am not sure if $\{Q_B, c_n\}$ is correct¹
- p. 128, below eq. (6.12): extraneous tab
- p. 141–2: The integral is written over the moduli space \mathcal{M}_g , but I would expect \mathcal{T}_g instead, as defined in (6.47) above ([1, (14.95)] for comparison). Then, I would expect to see \mathcal{M}_g instead of \mathcal{F}_g (which has not been defined anywhere before its use), except if one wants to stress that any region equivalent to \mathcal{M}_g would be fine.

The two next points include the correction $\mathcal{M}_g \to \mathcal{T}_g$ (but not $\mathcal{F}_g \to \mathcal{M}_g$).

• p. 141, eq. (6.52, 54):

$$\int_{\mathcal{M}_g} \prod_i \mathrm{d}\tau_i^2 \quad \longrightarrow \quad \int_{\mathcal{T}_g} \prod_i \mathrm{d}^2 \tau_i$$

- p. 142 below eq. (6.54): "we can replace $\frac{1}{|\text{MCG}|} \int_{\mathcal{M}_g} \prod_i d\tau_i$ by an integral over a fundamental region." \rightarrow "we can replace $\frac{1}{|\text{MCG}|} \int_{\mathcal{T}_g} \prod_i d^2 \tau_i$ by an integral over a fundamental region \mathcal{F}_g ."
- p. 142, eq. (6.55): $d\tau_i \to d^2 \tau_i$
- p. 143, eq. (6.62):

$$\int_{\mathcal{F}_g} \mathrm{d}^2 \prod_i \tau_i \quad \longrightarrow \quad \int_{\mathcal{F}_g} \prod_i \mathrm{d}^2 \tau_i$$

• p. 160, eq. (6.120):

$$\widetilde{\mathcal{A}} = \cdots e^{i\theta(L_0 - \bar{L}_0)} |\mathbf{B}\rangle \quad \longrightarrow \quad |A\rangle$$

• p. 510, eq. (14.262):

$$\delta e^a = \Lambda^a{}_b \mathrm{e}^a \quad \longrightarrow \quad \delta e^a = \Lambda^a{}_b \mathrm{e}^b$$

- p. 591, above eq. (16.8): $\alpha^{\mu}_{-1}\bar{\alpha}^{\nu}_{-1}|k\rangle \rightarrow \bar{\alpha}^{\mu}_{-1} \alpha^{\nu}_{-1}|k\rangle$ for consistency with eq. (16.8)
- p. 592, §1: "e.g. $\epsilon_{\mu\nu}^{(D)} \epsilon^{(G)\mu\nu} = 0$ for G = h, B"
- p. 690, below eq. (18.26): $\tilde{F}^2_{(p+2)} = \tilde{F}_{M_0...M_{p+2}}\tilde{F}^{M_0...M_{p+2}} \to \tilde{F}_{M_0...M_{p+1}}\tilde{F}^{M_0...M_{p+1}}$

References

- M. Nakahara. Geometry, Topology and Physics. 2nd edition. Institute of Physics Publishing, June 2003.
- [2] J. Polchinski. String Theory: Volume 1, An Introduction to the Bosonic String. Cambridge University Press, June 2005.

¹See https://physics.stackexchange.com/questions/280864.