Errata: String Field Theory - A Modern Introduction

Harold Erbin ${ }^{* 1,2,3}$
${ }^{1}$ Center for Theoretical Physics, Massachusetts Institute of Technology
Cambridge, MA 02139, UsA
${ }^{2}$ NSF Ai Institute for Artificial Intelligence and Fundamental Interactions
${ }^{3}$ Université Paris Saclay, Cea, Gif-sur-Yvette, F-91191, France

January 31, 2024

This document collects errata for my book [1]. References (equations, etc.) are given with respect to the published version (page numbers refer to the online draft of the corresponding edition). Each entry is accompanied by the date where it has been added to help find the most recent corrections. If you find any additional typos, please let me know.
The latest version of these errata can be found at:
https://harolderbin.com/science-books/
You can also find the most recent draft of my book, together with a frozen draft version of the book for easy reference.

1. p. 68, eq. (3.48):

$$
S_{\mathrm{gh}}[g, \hat{g}, B] \quad \longrightarrow \quad S_{\mathrm{gf}}[g, \hat{g}, B]
$$

(18/03/2022)
2. p. 91, remark 6.6:
"Operators with $h=\hbar=0$ "
$\rightarrow " h=\bar{h}=0 "$
(29/12/2023)
3. p. 111, eq. (7.44):

$$
J(z) V_{k}(w, \bar{w}) \sim \frac{\ell^{2} k}{2} \frac{V_{k}(w, \bar{w})}{z-w} \quad \longrightarrow \quad J(z) V_{k}(w, \bar{w}) \sim \frac{k}{2} \frac{V_{k}(w, \bar{w})}{z-w}
$$

(31/01/2023)
4. p. 134, sec. 8.1:
"matter: central charge c_{m}, energy-momentum tensor T_{m} and Hilbert space
$\mathcal{H}_{m}{ }^{\text {" }}$
$\rightarrow " T^{m "}$
(31/01/2024)
5. p. 158, eq. (10.34):

$$
b_{0}|\Phi\rangle=b_{0}\left[Q_{B}, \Delta\right] \quad \longrightarrow \quad b_{0}|\Phi\rangle=b_{0}\left\{Q_{B}, \Delta\right\}
$$

(02/10/2022)
6. p. 165 , before eq. (10.88):

$$
k^{2} A_{\mu}-k_{\mu} k \cdot A_{\nu}(k)=0 \quad \longrightarrow \quad k^{2} A_{\mu}-k_{\mu} k \cdot A(k)=0
$$

(18/03/2022, thanks to Maxime Médevielle)
7. p. 169 , before eq. (10.116):
"The equation of motion is to the on-shell condition as expected" \rightarrow "The equation of motion is equivalent to the on-shell condition as expected"
(18/03/2022, thanks to Maxime Médevielle)
8. p. 294, eq. (C.121-122):

$$
\mathrm{e}^{W_{\Psi}\left[\psi^{r}\right]} \quad \longrightarrow \quad \mathrm{e}^{-W_{\Psi}\left[\psi^{r}\right]}
$$

(18/03/2022)

References

[1] H. Erbin. String Field Theory: A Modern Introduction. Lecture Notes in Physics. Springer, Mar. 2021. DOI: 10.1007/978-3-030-65321-7. arXiv: 2301.01686.

