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Abstract

This review describe different topics related to string field theory (SFT) and its applica-
tions. The aim is to cover all the prerequisite materials to make the review self-contained.
It is a work in continuous progress. As such, you can find three versions:

o “book” version: String Field Theory — A Modern Introduction (published by Springer):
it is updated only for major milestones and contains only verified and consistent
chapters;

e “review” version, String Theory: A Field Theory Perspective: it is more frequently
updated and serves as a temporary buffer to let me explore how I want to organize
new content (for this reason, it is also structured on a thematic basis)

e “wild draft” version: it contains raw content I am gathering as I go along and some
speculations.

The text is organized on three levels: the main content (augmented with examples),
computations, and remarks. The latter two levels can be omitted in a first lecture: the
computations and remarks are clearly separated from the text (respectively by a vertical line
on the left and by italics) such that the reader can more directly navigate the text to find
the formula and concepts they is interested in. Text in dark and light grays must be taken
with more caution as I did not verify it sufficiently well or would like to improve it.

This review grew up from lecture notes for a course given at the Ludwig-Maximilians-
Universitat (winter semesters 2017-2018 and 2018-2019).

All comments and corrections are most welcome.

Updated versions can be found wherever is my professional webpage, currently at:
http://www.lpthe.jussieu.fr/~erbin/


https://www.springer.com/gp/book/9783030653200
http://www.lpthe.jussieu.fr/~erbin/
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Preface

This review grew up from lectures delivered within the Elite Master Program “Theoretical
and Mathematical Physics” from the Ludwig-Maximilians-Universitdt during the winter
semesters 2017-2018 and 2018-2019.

The main focus of this review is the closed bosonic string field theory (SFT). While there
are many resources available for the open bosonic SFT, a single review [88] has been written
since the final construction of the bosonic closed SFT by Zwiebach [317]. For this reason,
it makes sense to provide a modern and extensive study. Moreover, the usual approach to
open SFT focuses on the cubic theory, which is so special that it is difficult to generalize the
techniques to other SFTs. Finally, closed strings are arguably more fundamental than open
strings because they are always present since they describe gravity, which further motivates
my choice. However, the reader should not take this focus as denying the major achievements
and the beauty of the open SFT; reading this book should provide most of the tools needed
to feel comfortable also with this theory.

While part of the original goal of SFT is to provide a non-perturbative definition of string
theory and address important questions such as classifying consistent string backgrounds or
understanding dualities, no progress on this front has been achieved so far. Hence, there
is still much to understand and the recent surge of developments provides a new chance
to deepen our understanding of closed SF'T. For example, several consistency properties of
string theory have been proven rigorously using SF'T. Moreover, the recent construction of
the open-closed superstring field theory [203] together with earlier works [57, 266, 317, 319]
show that all types of string theories can be recast as an SF'T. This is why, I believe, it is a
good time to provide a complete review on SFT.

The goal of this review is to offer a self-contained description of SF'T and all the tools
necessary to build it. The emphasis is on describing the concepts behind SFT and to make
the reader build intuitions on what it means. For this reason, there are relatively few
applications.

The reader is assumed to have studied QFT and have basic knowledge of CFT and string
theory (classical string, Nambu—Goto action, light-cone and old-covariant quantizations).

Organization

The text is organized on three levels: the main content (augmented with examples), compu-
tations, and remarks. The latter two levels can be omitted in a first lecture. The examples,
computations, and remarks are clearly separated from the text (respectively, by a half-box
on the left and bottom, by a vertical line on the left, and by italics) to help the navigation.

Many computations have been set aside from the main text to avoid breaking the flow
and to provide the reader with the opportunity to check by themselves first. In some
occasions, computations are postponed well below the corresponding formula to gather
similar computations or to avoid breaking an argument. While the derivations contain more
details than usual textbooks and may look pedantic to the expert, I think it is useful for
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students and newcomers to have complete references where to check each step. This is even
more the case when there are many conventions in the literature. The remarks are not
directly relevant to the core of the text, but they make connections with other parts or topics.
The goal is to broaden the perspectives of the main text.

Text in dark gray indicates draft material which I started to check and organize, but
which still need further checking. This can also indicate more conceptual reflections which I
did not (or could not) verify. (Texts in computations, remarks, legends, footnotes, etc., are
always in black even, even when they are part of a grayed version.)

General references can be found at the end of each chapter to avoid overloading the
text. In-text references are reserved for specific points or explicit quotations (of a formula, a
discussion, a proof, etc.). I did not try to be exhaustive in the citations, and I have certainly
missed important references: this should be imputed to my lack of familiarity with them and
not to their value.

I tried to make the different chapters relatively independent. This implies repetitions,
but this allows to present the same concept according to different perspectives. This also
avoids having to always go back and forth.

The thematic organization of the book makes the progression somewhat non-linear.
Accordingly, the reader should not feel that they cannot read the rest of the review if they
find a chapter difficult. I would recommend going on, and come back later.

This text is a preprint of the textbook [81] and is reproduced with permission of Springer.
The draft can be accessed on arXiv: 2301.01686. My plan is to frequently update the draft
of this review with new content. The last version can be accessed on my professional webpage,
currently located at:

https://harolderbin.com/science-books/

These notes are available in two formats. The first, called the “book” version, is shorter, more
static and verified more extensively. The second, called the “review” version, is organized
by topics and contains more details but is less thoroughly checked (there is also a “draft”
version of the latter which is much wilder).
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Chapter 1

Introduction

In this chapter, we introduce the main motivations for studying string theory, and why it
is important to design a string field theory. After describing the central features of string
theory, we describe the most important concepts of the worldsheet formulation. Then, we
explain the reasons leading to string field theory (SFT) and outline the ideas which will be
discussed in the rest of the review.

1.1 Strings, a distinguished theory

The first and simplest reason for considering theories of fundamental p-branes (fundamental
objects extended in p spatial dimensions) can be summarized by the following question:
“Why would Nature just make use of point-particles?” There is no a priori reason forbidding
the existence of fundamental extended objects and, according to Gell-Mann’s totalitarian
principle, “Everything not forbidden is compulsory.” If a consistent theory cannot be built
(after a reasonable amount of effort) or if it contradicts current theories (in their domains of
validity) and experiments, then one can support the claim that only point-particles exist.
On the other side, if such a theory can be built, it is of primary interest to understand it
deeper and to see if it can solve the current problems in high-energy theoretical physics.

The simplest case after the point particle is the string, so it makes sense to start with
it. It happens that a consistent theory of strings can be constructed, and that the latter
(in its supersymmetric version) contains all the necessary ingredients for a fully consistent
high-energy model:'

o quantum gravity (quantization of general relativity plus higher-derivative corrections);
o grand unification (of matter, interactions and gravity);
o divergences, UV finiteness (finite and renormalizable theory);

o fixed number of dimensions (26 = 25 + 1 for the bosonic string, 10 = 9 + 1 for the
supersymmetric version);

¢ existence of all possible branes;
¢ no dimensionless parameters and one dimensionful parameter (the string length ;).

It can be expected that a theory of fundamental strings (1-branes) occupies a distinguished
place among fundamental p-branes for the following reasons.

IThere are also indications that a theory of membranes (2-branes) in 10 + 1 dimensions, called M-theory,
should exist. No direct and satisfactory description of the latter has been found and we will thus focus on
string theory in this review.
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Figure 1.1: Locality of a particle interaction: two different observers always agree on the
interaction point and which parts of the worldline are 1- and 2-particle states.

Interaction non-locality In a QFT of point particles, UV divergences arise because
interactions (defined as the place where the number and/or nature of the objects change)
are arbitrarily localized at a spacetime point. In Feynman graphs, such divergences can be
seen when the momentum of a loop becomes infinite (two vertices collide): this happens
when trying to concentrate an infinite amount of energy at a single point. However, these
divergences are expected to be reduced or absent in a field theory of extended objects:
whereas the interaction between particles is perfectly local in spacetime and agreed upon by
all observers (Figure 1.1), the spatial extension of branes makes the interactions non-local.
This means that two different observers will neither agree on the place of the interactions
(Figure 1.2), nor on the part of the diagram which describes one or two branes.

The string lies at the boundary between too much local and too much non-local: in any
given frame, the interaction is local in space, but not in spacetime. The reason is that a
string is one-dimensional and splits or joins along a point. For p > 1, the brane needs to
break/join along an extended spatial section, which looks non-local.

Another consequence of the non-locality is a drastic reduction of the possible interactions.
If an interaction is Lorentz invariant, Lorentz covariant objects can be attached at the vertex
(such as momentum or gamma matrices): this gives Lorentz invariants after contracting with
indices carried by the field. But, this is impossible if the interaction itself is non-local (and
thus not invariant): inserting a covariant object would break Lorentz invariance.

Brane degrees of freedom The higher the number of spatial dimensions of a p-brane, the
more possibilities it has to fluctuate. As a consequence, it is expected that new divergences
appear as p increases due to the proliferations of the brane degrees of freedom. From the
worldvolume perspective, this is understood from the fact that the worldvolume theory
describes a field theory in (p + 1) dimensions, and UV divergences become worse as the
number of dimensions increase. The limiting case happens for the string (p = 1) since
two-dimensional field theories are well-behaved in this respect (for example, any monomial
interaction for a scalar field is power-counting renormalizable). This can be explained by the
low-dimensionality of the momentum integration and by the enhancement of symmetries in
two dimensions. Hence, strings should display nice properties and are thus of special interest.

Worldvolume theory The point-particle (0-brane) and the string (1-brane) are also
remarkable in another aspect: it is possible to construct a simple worldvolume field theory
(and the associated functional integral) in terms of a worldvolume metric. All components of
the latter are fixed by gauge symmetries (diffeomorphisms for the particle, diffeomorphisms
and Weyl invariance for the string). This ensures the reparametrization invariance of the
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(a) Observers at rest and boosted. (b) Observers close to the speed
of light moving in opposite direc-

tions. The interactions are widely
separated in each case.

/
t3

Figure 1.2: Non-locality of string interaction: two different observers see the interaction
happening at different places (denoted by the filled and empty circles) and they don’t agree
on which parts of the worldsheet are 1- and 2-string states (the litigation is denoted by the
grey zone).

worldvolume without having to use a complicated action. Oppositely, the worldvolume metric
cannot be completely gauge fixed for p > 1.

Summary As a conclusion, strings achieve an optimal balance between spacetime and
worldsheet divergences, as well as having a simple description with reparametrization invari-
ance.

Since the construction of a field theory is difficult, it is natural to start with a worldsheet
theory and to study it in the first-quantization formalism, which will provide a guideline for
writing the field theory. In particular, this allows to access the physical states in a simple
way and to find other general properties of the theory. When it comes to the interactions
and scattering amplitudes, this approach may be hopeless in general since the topology of
the worldvolume needs to be specified by hand (describing the interaction process). In this
respect, the case of the string is again exceptional: because Riemann surfaces have been
classified and are well-understood, the arbitrariness is minimal. Combined with the tools of
conformal field theory, many computations can be performed. Moreover, since the modes of
vibrations of the strings provide all the necessary ingredients to describe the Standard model,
it is sufficient to consider only one string field (for one type of strings), instead of the plethora
found in point-particle field theory (one field for each particle). Similarly, non-perturbative
information (such as branes and dualities) could be found only due to the specific properties
of strings.

Coming back to the question which opened this section, higher-dimensional branes of all
the allowed dimensions naturally appear in string theory as bound states. Hence, even if
the worldvolume formulation of branes with p > 1 looks pathological?, string theory hints
towards another definition of these objects.

2Entering in the details would take us too far away from the main topic of this review. Some of the
problems found when dealing with (p > 2)-branes are: how to define a Wick rotation for 3-manifolds, the
presence of Lorentz anomalies in target spacetime, problems with the spectrum, lack of renormalizability,
impossibility to gauge-fix the worldvolume metric [9-15, 56, 59, 60, 79, 157, 186, 192-194, 222, 237].
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1.2 String theory

1.2.1 Properties

The goal of this section is to give a general idea of string theory by introducing some concepts
and terminology. The reader not familiar with the points described in this section is advised
to follow in parallel some standard worldsheet string theory textbooks.

Worldsheet CFT

A string is characterized by its worldsheet field theory (Chapter 3).° The worldsheet is
parametrized by coordinates 0% = (7, 0). The simplest description is obtained by endowing
the worldsheet with a metric gq,(c®) (@ = 0,1) and by adding a set of D scalar fields X*(o®)
living on the worldsheet (4 =0, ..., D — 1). The latter represents the position of the string
in the D-dimensional spacetime. From the classical equations of motion, the metric g is
proportional to the metric induced on the worldsheet from its embedding in spacetime. More
generally, one ensures that the worldsheet metric is non-dynamical by imposing that the
action is invariant under (worldsheet) diffeomorphisms and under Weyl transformations (local
rescalings of the metric). The consistency of these conditions at the quantum level imposes
that D = 26, and this number is called the critical dimension. Gauge fixing the symmetries,
and thus the metric, leads to the conformal invariance of the resulting worldsheet field theory:
a conformal field theory (CFT) is a field theory (possibly on a curved background) in which
only angles and not distances can be measured (Chapters 19, 20 and 22). This simplifies
greatly the analysis since the two-dimensional conformal algebra (called the Virasoro algebra)
is infinite-dimensional.

CFTs more general than D free scalar fields can be considered: fields taking non-compact
values are interpreted as non-compact dimensions while compact or Grassmann-odd fields
are interpreted as compact dimensions or internal structure, like the spin.

While the light-cone quantization allows to find quickly the states of the theory, the
simplest covariant method is the BRST quantization (Chapter 23). It introduces ghosts (and
superghosts) associated to the gauge fixing of diffeomorphisms (and local supersymmetry).
These (super)ghosts form a CFT which is universal (independent of the matter CFT).

The trajectory of the string is denoted by z.(7, o). It begins and ends respectively at the
geometric shapes parametrized by z.(7;,0) = z;(¢) and by z.(7,0) = (o). Note that the
coordinate system on the worldsheet itself is arbitrary. The spatial section of a string can be
topologically closed (circle) or open (line) (Figure 1.3), leading to cylindrical or rectangular
worldsheets as illustrated in Figures 1.4 and 1.5. To each topology is associated different
boundary conditions and types of strings:

o closed: periodic and anti-periodic boundary conditions;

o open: Dirichlet and Neumann boundary conditions.
While a closed string theory is consistent by itself, an open string theory is not and requires
closed strings.
Spectrum

In order to gain some intuition for the states described by a closed string, one can write the
Fourier expansion of the fields X* (in the gauge gu, = 7. and after imposing the equations

3We focus mainly on the bosonic string theory, leaving aside the superstring, except when differences are
important.
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(a) Open string (b) Closed string

Figure 1.3: Open and closed strings.

(1,0) - xh(T,0)

l‘l

Figure 1.4: Trajectory x4 (7,0) of a closed string in spacetime (worldsheet). It begins and
ends at the circles parametrized by z;(c) and z(c). The worldsheet is topologically a
cylinder and is parametrized by (7,0) € [, 7¢] x [0,27).

(Tf7 0)

(Tiv 0) (7_1'7 e)

Figure 1.5: Trajectory % (7,0) of an open string in spacetime (worldsheet). It begins and
ends at the lines parametrized by z;(0) and z (o). The worldsheet is topologically a rectangle
and is parametrized by (7,0) € [r;, 7f] X [0, 4].
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of motion)

i 1 . )
XH(T,0) ~ xt + phT + 7 Z - (aﬁe_‘"(T_") + dﬁe_‘"(TJr”)) , (1.1)
nez*

where z# is the centre-of-mass position of the string and p* its momentum.* Canonical
quantization leads to the usual commutator:

[z#,p"] = in"". (12)

With respect to a point-particle for which only the first two terms are present, there are an
infinite number of oscillators af;, and &} which satisfy canonical commutation relations for
creation n < 0 and annihilation operators n > 0

[a%’ aruz,] = m’?“'/5m+n,0 . (13)

The non-zero modes are the Fourier modes of the excitations of the embedded string. The
case of the open string is simply obtained by setting &,, = a,, and p — 2p. The Hamiltonian
for the closed and open strings read respectively

m? -
Hclosed = _7 +N+ N — 2, (14&)

Hopen = —m?*+ N -1 (1.4b)

where m? = —p#p,, is the mass of the state (in Planck units), N and N (level operators)

count the numbers N,, and N,, of oscillators v, and &, weighted by their mode index n:

1
N: = — Q_, *
5 nN,, N, nan Qn ,
neN
_ _ 1
N:§ Nny Nn:__—n'_n~
n nOé (6

neN

(1.5)

With these elements, the Hilbert space of the string theory can be constructed. Invariance
under reparametrization leads to the on-shell condition, which says that the Hamiltonian
vanishes:

H$) =0 (L6)

for any physical state |1)). Another constraint for the closed string is the level-matching
condition

(N—N)[¢)=0. (1.7)

It can be understood as fixing an origin on the string.
The ground state |k) with momentum & is defined to be the eigenstate of the momentum
operator which does not contain any oscillator excitation:

p* k) = k¥ |k), Vn>0: allk)=0. (1.8)
A general state can be built by applying successively creation operators

) =TT T @)™ 1% (1.9)

n>0 pu=0

4In the introduction, we set o = 1.
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where N, , € N counts excitation level of the oscillator o, . In the rest of this section, we
describe the first two levels of states.

The ground state is a tachyon (faster-than-light particle) because the Hamiltonian
constraint shows that it has a negative mass (in the units where o/ = 1):

closed: m?=—4, open: m?=-1. (1.10)
The first excited state of the open string is found by applying a._; on the vacuum |k):
o k) . (1.11)

This state is massless:
m?=0 (1.12)

and since it transforms as a Lorentz vector (spin 1), it is identified with a U(1) gauge boson.
Writing a superposition of such states

)= [aPkau e, ), (1.13)

the coefficient A, (k) of the Fourier expansion is interpreted as the spacetime field for the
gauge boson. Reparametrization invariance is equivalent to the equation of motion

kA, =0. (1.14)
One can prove that the field obeys the Lorentz gauge condition
kA, =0, (1.15)
which results from gauge fixing the U(1) gauge invariance
A, — AL+ k. (1.16)

It can also be checked that the low-energy action reproduces the Maxwell action.
The first level of the closed string is obtained by applying both o_; and &1 (this is the
only way to match N = N at this level)

ot av |k) (1.17)
and the corresponding states are massless
m?=0. (1.18)

These states can be decomposed into irreducible representations of the Lorentz group

1
(0/115"11 +a” e — D a1 ‘a—l) p) 5
(1.19)

~v v = 1 ~v
(aﬁla—l - a—lail) |p> ) 5 npua/ila_l |p>
which are respectively associated to the spacetime fields G,,, (metric, spin 2), B, (Kalb—
Ramond 2-form) and ® (dilaton, spin 0). The appearance of a massless spin 2 particle (with

low-energy action being the Einstein—Hilbert action) is a key result and originally raised
interest for string theory.
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10~ 16 cm ° 10733 cm

Figure 1.6: A string of length 10733 cm looks like a point-like particle at higher scales.

Remark 1.1 (Reparametrization constraints) Reparametrization invariance leads to
other constraints than H = 0. They imply in particular that the massless fields have the
correct gauge invariance and hence the correct degrees of freedom.

Note that, after taking into account these constraints, the remaining modes correspond to
excitations of the string in the directions transverse to it.

Hence, each vibrational mode of the string corresponds to a spacetime field for a point-
particle (and linear superpositions of modes can describe several fields). This is how string
theory achieves unification since a single type of string (of each topology) is sufficient for
describing all the possible types of fields encountered in the standard model and in gravity.
They correspond to the lowest excitation modes, the higher massive modes being too heavy
to be observed at low energy.

The understanding of the string in terms of spacetime fields follows also from the
observation that a fundamental string is very tiny (10733 cm) and as such it appears to be
point-like when seen from afar (Figure 1.6). The spin and the other properties of the particles
are provided by the internal structure of the string (and in particular its vibrational mode).

Bosonic string theory includes tachyons and is thus unstable. While the instability of
the open string tachyon is well understood and indicates that open strings are unstable and
condense to closed strings, the status of the closed string tachyon is more worrisome (literally
interpreted, it indicates a decay of spacetime itself). In order to solve this problem, one can
introduce supersymmetry: in this case, the spectrum does not include the tachyon because it
cannot be paired with a supersymmetric partner.

Moreover, as its name indicates, the bosonic string possesses only bosons in its spectrum
(perturbatively), which is an important obstacle to reproduce the standard model. By
introducing spacetime fermions, supersymmetry also solves this problem. The last direct
advantage of the superstring is that it reduces the number of dimensions from 26 to 10, which
makes the compactification easier.

1.2.2 Classification of superstring theories

In this section, we describe the different superstring theories (Part IV). In order to proceed,
we need to introduce some new elements.

The worldsheet field theory of the closed string is made of two sectors, called the left- and
right-moving sectors (the a,, and &, modes). While they are treated symmetrically in the
simplest models, they are in fact independent (up to the zero-mode) and the corresponding
CF'T can be chosen to be distinct.

The second ingredient already evoked earlier is supersymmetry. This symmetry associates
a fermion to each boson (and conversely) through the action of a supercharge @

|boson) = @ |fermion) . (1.20)

More generally, one can consider N supercharges which build up a family of several bosonic
and fermionic partners. Since each supercharge increases the spin by 1/2 (in D = 4), there is
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an upper limit for the number of supersymmetries — for interacting theories with a finite
number of fields® — in order to keep the spin of a family in the range where consistent actions
exist:

e Npax = 4 without gravity (—1 < spin < 1);
e Npax = 8 with gravity (—2 < spin < 2).

This counting serves as a basis to determine the maximal number of supersymmetries in
other dimensions (by relating them through dimensional reductions).

Let’s turn our attention to the case of the two-dimensional worldsheet theory. The number
of supersymmetries of the closed left- and right-moving sectors can be chosen independently,
and the number of charges is written as (N, Ng) (the index is omitted when statements are
made at the level of the CFT). The critical dimension (absence of quantum anomaly for the
Weyl invariance) depends on the number of supersymmetry

D(N=0)=26 DN =1)=10. (1.21)

Type II superstrings have (N1, Ng) = (1,1) and come in two flavours called ITA and IIB
according to the chiraly of the spacetime gravitini chiralities. A theory is called heterotic if
N1 > Npg; we will mostly be interested in the case N; = 1 and Ng = 0.° In such theories,
there cannot be open strings since both sectors must be equal in the latter. Since the critical
dimensions of the two sectors do not match, one needs to get rid of the additional dimensions
of the right-moving sector; this leads to the next topic — gauge groups.

Gauge groups associated with spacetime gauge bosons appear in two different places.
In heterotic models, the compactification of the unbalanced dimensions of the left sector
leads to the appearance of a gauge symmetry. The possibilities are scarce due to consistency
conditions which ensure a correct gluing with the right-sector. Another possibility is to
add degrees of freedom — known as Chan—Paton indices — at the ends of open strings:
one end transforms in the fundamental representation of a group G, while the other end
transforms in the anti-fundamental. The modes of the open string then reside in the adjoint
representation, and the massless spin-1 particles become the gauge bosons of the non-Abelian
gauge symietry.

Finally, one can consider oriented or unoriented strings. An oriented string possesses an
internal direction, i.e. there is a distinction between going from the left to the right (for an
open string) or circling in clockwise or anti-clockwise direction (for a closed string). Such
an orientation can be attributed globally to the spacetime history of all strings (interacting
or not). The unoriented string is obtained by quotienting the theory by the Zs worldsheet
parity symmetry which exchanges the left- and right-moving sectors. Applying this to the
type IIB gives the type I theory.

The tachyon-free superstring theories together with the bosonic string are summarized in
Table 1.1.

1.2.3 Interactions

Worldsheet and Riemann surfaces

After having described the spectrum and the general characteristics of string theory comes
the question of interactions. The worldsheets obtained in this way are Riemann surfaces, i.e.
1-dimensional complex manifolds. They are classified by the numbers of handles (or holes)
g (called the genus) and external tubes n. In the presence of open strings, surfaces have

5These conditions exclude the cases of free theories and higher-spin theories.
6The case N;, < Ng is identical up to exchange of the left- and right-moving sectors.
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worsljss}lfleet D Spas(;est}l’me gauge group open string oriented tachyon
bosonic (0,0) 26 0 any” yes yes / no yes
type I (1,1) 10 (1,0) SO(32) yes no no
type IIA (1,1) 10 (1,1) U(1) (yes)t yes no
type IIB (1,1) 10 (2,0 none (yes)t yes no
heterotic SO(32) (1,0) 10 (1,0) SO(32) no yes no
heterotic Eg (1,0) 10 (1,0) Es x Eg no yes no
heterotic SO(16) (1,0) 10 (0,0) SO(16) x SO(16) no yes no

* UV divergences beyond the tachyon (interpreted as closed string dilaton tadpoles) cancel only for the unoriented
open plus closed strings with gauge group SO(2"®) = SO(8192).

t The parenthesis indicates that type II theories don’t have open strings in the vacuum: they require a D-brane
background. This is expected since there is no gauge multiplet in d = 10 (1,1) or (2,0) supergravities (the
D-brane breaks half of the supersymmetry).

Table 1.1: List of the consistent tachyon-free (super)string theories. The bosonic theory is
added for comparison. There are additional heterotic theories without spacetime supersym-
metry, but they contain a tachyon and are thus omitted.

(a) Closed strings

(b) Open strings

Figure 1.7: Graphs corresponding to 1-loop 4-point scattering after a conformal mapping.

boundaries: in addition to the handles and tubes, they are classified by the numbers of disks
b and of strips m.” A particularly important number associated to each surface is the Euler
characteristics

X=2-29-0b, (1.22)

which is a topological invariant. It is remarkable that there is a single topology at every
loop order when one considers only closed strings, and just a few more in the presence of
open strings. The analysis is greatly simplified in contrast to QFT, for which the number of
Feynman graphs increases very rapidly with the number of loops and external particles.

Due to the topological equivalence between surfaces, a conformal map can be used in
order to work with simpler surfaces. In particular, the external tubes and strips are collapsed
to points called punctures (or marked points) on the corresponding surfaces or boundaries.
A general amplitude then looks like a sphere from which holes and disks have been removed
and to which marked points have been pierced (Figure 1.8).

"We ignore unoriented strings in this discussion. They would lead to an additional object called a
cross-cap, which is a place where the surface looses its orientation.
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Figure 1.8: General Riemann surfaces with boundaries and punctures.

Amplitudes

In order to compute an amplitude for the scattering of n strings (Chapters 4 and 5), one
must sum over all the inequivalent worldsheets through a path integral weighted by the CFT
action chosen to describe the theory.® At fixed n, the sum runs over the genus g, such that
each term is described by a Riemann surface X ,, of genus g with n punctures.

The interactions between strings follow from the graph topologies: since the latter are
not encoded into the action, the dependence in the coupling constant must be added by
hand. For closed strings, there is a unique cubic vertex with coupling gs. A direct inspection
shows that the correct factor is go~2"29:

e for n = 3 there is one factor g5, and every additional external string leads to the
addition of one vertex with factor g, since this process can be obtained from the n — 1
process by splitting one of the external string in two by inserting a vertex;

e each loop comes with two vertices, so g-loops provide a factor ggg .

Remark 1.2 (Status of g, as a parameter) It was stated earlier that string theory has
no dimensionless parameter, but gs looks to be one. In reality it is determined by the
expectation value of the dilaton g, = e!®). Hence the coupling constant is not a parameter
defining the theory but is rather determined by the dynamics of the theory.

Finally, the external states must be specified: this amounts to prescribe boundary
conditions for the path integral or to insert the corresponding wave functions. Under the
conformal mapping which brings the external legs to punctures located at z;, the states
are mapped to local operators V;(k;, z;) inserted at the points z;. The latter are built from
the CFT fields and are called vertex operators: they are characterized by a momentum k*
which comes from the Fourier transformation of the X* fields representing the non-compact
dimensions. These operators are inserted inside the path integral with integrals over the
positions z; in order to describe all possible conformal mappings.

Ultimately, the amplitude (amputated Green function) is computed as

Ap(kyy ..o k) = gt 294, , (1.23)
920
where . .
Agn = / I a2 / dgapd® e~ Serel9er VI TT Vi (k;, 2;) (1.24)
i=1 =1

8For simplicity we focus on closed string amplitudes in this section.
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is the g-loop m-point amplitude (for simplicity we omit the dependence on the states beyond
the momentum). ¥ denotes collectively the CFT fields and g, is the metric on the surface.

The integration over the metrics and over the puncture locations contain a huge redun-
dancy due to the invariance under reparametrizations, which means that one integrates over
many equivalent surfaces. To avoid this, Faddeev—Popov ghosts must be introduced and the
integral is restricted to only finitely many (real) parameters tx. They form the moduli space
My, of the Riemann surfaces ¥, ,, whose dimension is

dimg Mgy, = 6g — 6 + 2n. (1.25)

The computation of the amplitude Ay, can be summarized as:

Agn = /
M

The function F(t) is a correlation function in the worldsheet CFT defined on the Riemann
surface X p,

6g—6+2n
II arF@). (1.26)
A=1

g,mn

F(t) = <H V; x ghosts X super—ghosts> . (1.27)

=1 Zgn

Note that the (super)ghost part is independent of the choice of the matter CFT.

Divergences and Feynman graphs

Formally the moduli parameters are equivalent to Schwinger (proper-time) parameters s; in
usual QFT: these are introduced in order to rewrite propagators as

1 /Oo d —s(k2+m2) (1 28)
—_—= se , .
k% +m? 0

such that the integration over the momentum k becomes a Gaussian times a polynomial.
This form of the propagator is useful to display the three types of divergences which can be
encountered:

1. IR: regions s; — oo (for k2 +m?2 < 0). These divergences are artificial for k% + m2 < 0
and means that the parametrization is not appropriate. Divergences for k2 +m?2 =0
are genuine and translates the fact that quantum effects shift the vacuum and the
masses. Taking these effects into account necessitates a field theory framework in which
renormalization can be used.

2. UV: regions s; — 0 (after integrating over k). Such divergences are absent in string
theories because these regions are excluded from the moduli space Mg ,, (see Figure 1.9
for the example of the torus).’

3. Spurious: regions with finite s; where the amplitude diverges. This happens typically
only in the presence of super-ghosts and it translates a breakdown of the gauge fixing
condition.'? Since these spurious singularities of the amplitudes are not physical, one
needs to ensure that they can be removed, which is indeed possible to achieve.

9There is a caveat to this statement: UV divergences reappear in string field theory in Lorentzian
signature due to the way the theory is formulated. The solution requires a generalization of the Wick rotation.
Moreover, this does not hold for open strings whose moduli spaces contains those regions: in this case, the
divergences are reinterpreted in terms of closed strings propagating.
10Such spurious singularities are also found in supergravity.
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Figure 1.9: Moduli space of the torus: Ret € [-1/2,1/2], Im7 > 0 and |7| > 1.

Hence, only IR divergences present a real challenge to string theory. Dealing with these
divergences requires renormalizing the amplitudes, but this is not possible in the standard
formulation of worldsheet string theory since the states are on-shell.'!

1.3 String field theory

1.3.1 From the worldsheet to field theory

The first step is to solve the IR divergences problem is to go off-shell (Chapters 7 and 9).
This is made possible by introducing local coordinates around the punctures of the Riemann
surface (Chapter 8).

The IR divergences originate from Riemann surfaces close to degeneration, that is, surfaces
with long tubes. The latter can be of separating and non-separating types, depending on
whether the Riemann surface splits in two pieces if the tube is cut (Figure 1.10). By exploring
the form of the amplitudes in this limit (Chapter 10), the expression naturally separates
into several pieces, to be interpreted as two amplitudes (of lower n and g) connected by a
propagator. The latter can be reinterpreted as a standard (k? + m?)~! term, hence solving
the divergence problem for k% +m? < 0. Taking this decomposition seriously leads to identify
each contribution with a Feynman graph.

Decomposing the amplitude recursively, the next step consists in finding the elementary
graphs, i.e. the interaction vertices from which all other graphs (and amplitudes) can be
built. These graphs are the building blocks of the field theory (Chapter 14), with the kinetic
term given by the inverse of the propagator. Having Feynman diagrams and a field theory
allows to use all the standard tools from QFT.

However, this field theory is gauge fixed because on-shell amplitudes are gauge invariant
and include only physical states. For this reason, one needs to find how to re-establish
the gauge invariance. Due to the complicated structure of string theory, the full-fledged

11The on-shell condition is a consequence of the BRST and conformal invariance. While the first will be
given up, the second will be maintained to facilitate the computations.
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(a) Separating.

(b) Non-separating.

Figure 1.10: Degeneration of Riemann surfaces.

Batalin—Vilkovisky (BV) formalism must be used (Chapter 14): it basically amounts to
introduce ghosts before the gauge fixing. The final stage is to obtain the 1PI effective action
from which the physics is more easily extracted. But, it is useful to study first the free theory
(Chapters 12 and 13) to gain some insights.

The procedure we will follow is a kind of reverse-engineering: we know what is the final
result and we want to study backwards how it is obtained:

on-shell amplitude — off-shell amplitude — Feynman graphs
— gauge fixed field theory — BV field theory

In standard QFT, one follows the opposite process.

Remark 1.3 There are some prescriptions (using for example analytic continuation, the
optical theorem, some tricks...) to address the problems mentioned above, but there is no
general and universally valid procedure. A field theory is much more satisfactory because it
provides a unique and complete framework.

We can now summarise the disadvantages of the worldsheet approach over the spacetime
field one:

« 1o natural description of (relativistic) multi-particle states;
o on-shell states:

— lack of renormalization,
— presence of infrared divergences,

— scattering amplitudes only for protected states;

e interactions added by hand;
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o hard to check consistency (unitarity, causality...);
e absence of non-perturbative processes.

Some of these problems can be addressed with various prescriptions, but it is desirable
to dispose of a unified and systematic procedure, which is to be found in the field theory
description.

1.3.2 String field action

A string field theory (SFT) for open and closed strings is based on two fields ®[X ()] (open
string field) and ¥[X (o)] (closed string field) governed by some action S[®, ¥]. This action
is built from a diagonal kinetic term

1 1
So =5 Ku(¥,¥) + 3 Ka(®,2) (1.29)
and from an interaction polynomial in the fields

Sint = Z Vm,n(q:‘m, \IJn) (130)

m,n

where V,, , is an appropriate product mapping m closed and n open string states to a
number (the power is with respect to the tensor product). In particular, it contains the
coupling constant. Contrary to the worldsheet approach where the cubic interaction looks
sufficient, higher-order elementary interactions with m,n € N are typically needed. A second
specific feature is that the products also admit a loop (or genus g) expansion: a fundamental
n-point interaction is introduced at every loop order g. These terms are interpreted as (finite)
counter-terms needed to restore the gauge invariance of the measure. These two facts come
from the decomposition of the moduli spaces in pieces (Section 1.2.3).

Writing an action for a field W[X (o)] for which reparametrization invariance holds is
highly complicated. The most powerful method is to introduce a functional dependence in
ghost fields ¥[X (0), c(0)] and to extend the BRST formalism to the string field, leading
ultimately to the BV formalism. While the latter formalism is the most complete and
ensures that the theory is consistent at the quantum level, it is difficult to characterize the
interactions explicitly. Several constructions which exploit different properties of the theory
have been proposed:

e direct computation by reverse engineering of worldsheet amplitudes;

« specific parametrization of the Riemann surfaces (hyperbolic, minimal area);
o analogy with Chern—Simons and Wess—Zumino-Witten (WZW) theories;

e exploitation of the L., and A, algebra structures.

It can be shown that these constructions are all equivalent. For the superstring, the simplest
strategy is to dress the bosonic interactions with data from the super-ghost sector, which
motivates the study of the bosonic SFT by itself. The main difficulty in working with SFT is
that only the first few interactions have been constructed explicitly. Finally, the advantage
of the first formulation is that it provides a general formulation of SFT at the quantum level,
from which the general structure can be studied.
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1.3.3 Expression with spacetime fields

To obtain a more intuitive picture and to make contact with the spacetime fields, the field is
expanded in terms of 1-particle states in the momentum representation

=3 [y ¥el® o), (131)

where a denotes collectively the discrete labels of the CFT eigenstates. The coefficients
Yo (k) of the CFT states |k, ) are spacetime fields, the first ones being the same as those
found in the first-quantized picture (Section 1.2.1)

Yo ={T,Guv, Buv, ®,...}. (1.32)

Then, inserting this expansion in the action gives an expression like S[T, G, ...]. The exact
expression of this action is out of reach and only the lowest terms are explicitly computable
for a given CFT background. Nonetheless, examining the string field action indicates what
is the generic form of the action in terms of the spacetime fields. One can then study the
properties of such a general QFT: since it is more general than the SFT (expanded) action,
any result derived for it will also be valid for SFT. This approach is very fruitful for studying
properties related to consistency of QFT (unitarity, soft theorems...) and this can provide
helpful phenomenological models.
In conclusion, SF'T can be seen as a regular QFT with the following properties:

e infinite number of fields;
« non-local interaction (proportional to e=*"#);
o the amplitudes agree with the worldsheet amplitudes (when the latter can be defined);

 genuine (IR) divergences agree but can be handled with the usual QFT tools.

1.3.4 Applications

The first aspect is the possibility to use standard QFT techniques (such as renormalization)
to study — and to make sense of — string amplitudes. In this sense, SF'T can be viewed as
providing recipes for computing quantities in the worldsheet theory which are otherwise not
defined. This program has been pushed quite far in the last years.

Another reason to use SFT is gauge invariance: it is always easier to describe a system
when its gauge invariance is manifest. We have explained that string theory contains Yang-
Mills and graviton fields with the corresponding (spacetime) gauge invariances (non-Abelian
gauge symmetry and diffeomorphisms). In fact, these symmetries are enhanced to an
enormous gauge invariance when taking into account the higher-spin fields. This invariance
is hidden in the standard formulation and cannot be exploited fully. On the other hand, the
full gauge symmetry is manifest in string field theory.

Finally, the worldvolume description of p-brane is difficult because there is no analogue
of the Polyakov action. If one could find a first-principle description of SF'T which does not
rely on CFT and first-quantization, then one may hope to generalize it to build a brane field
theory.

We can summarize the general motivations for studying SFT:

« field theory (second-quantization);
e more rigorous and constructive formulation;

« make gauge invariance explicit (L., algebras et al.);
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use standard QFT techniques (renormalization, analyticity. . .)
— remove IR divergences, prove consistency (Cutkosky rules, unitarity, soft theorems,
background independence. . . );

 worldvolume theory ill-defined for (p > 1)-branes.

Beyond these general ideas, SF'T has been developed in order to address different questions:

o worldsheet scattering amplitudes;

effective actions;

map of the consistent backgrounds (classical solutions, marginal deformations, RR
fluxes. . . );

collective, non-perturbative, thermal, dynamical effects;
symmetry breaking effects;

dynamics of compactification;

proof of dualities;

proof of the AdS/CFT correspondence.

The last series of points is still out of reach within the current formulation of SF'T. However,
the last two decades have seen many important develoments developments:

construction of the open, closed and open-closed superstring field theories:

— 1PI and BV actions and general properties [90, 203, 204, 261, 262, 264, 266, 268,
270, 273, 274, 278],

— dressing of bosonic products using the WZW construction and homotopy alge-
bra [Erler:2015:AinftyStructureBerkovits, 25, 26, 84-87, 91-93, 97, 117, 137,
162, 166, 172-178, 220],

— light-cone super-SFT [140-143],
— supermoduli space [214, 294];

hyperbolic and minimal area constructions [52, 127, 128, 200-202, 226];
open string analytic solutions [95, 96];

level-truncation solutions [167-169];

field theory properties [47, 58, 182, 230, 269, 271, 272];

spacetime effective actions [82, 188, 189, 303];

defining worldsheet scattering amplitudes [227-229, 263, 264, 267, 275-277];
marginal and RR deformations [48, 277, 303].

Recent reviews are [57, 88, 89).
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1.4 References

Numerous books have been published on string theory. Useful complements are:

Zwiebach [320]: the best introductory book, which covers in details the classical aspect
of the bosonic string theory and the most important aspects of its quantization. It
describes also some advanced aspects and contains important insights on the structure
of the theory.

Lawrie [183, chap. 15]: the best short introduction to the most important concepts.

Blumenhagen, Liist, Theisen [34]: very complete and pedagogical book, certainly the
best generic introduction and reference.

Polchinski [237, 238]: an excellent complement to the previous book, it contains
additional formal aspects not developed in [34]. The difficulty increases quickly and
this book is not recommended for a first approach to the topic.

Kiritsis [158]: very useful as a reference but not suitable as an introduction.

Deligne et al.: a (huge) book more focused on the mathematical aspects and on string
perturbation theory is [62, 63].

Kaku [151, 152]: the only books to address SFT in some length. Some parts are
outdated or follow an untraditional approach, which can make them hard to follow.

Schomerus [250]: short introduction to the main concepts of string theory.

Other books on string theory and related aspects are [71, 119, 120, 136, 150, 221, 307]. Good
lecture notes include [197, 292, 293, 301, 304, 314].
For references about different aspects in this chapter:

Differences between the worldvolume and spacetime formalisms — and of the associated
first- and second-quantization — for the particle and string [151, chap. 1, 320, chap. 11].

General properties of relativistic strings [115, 320].
Divergences in string theory [57, 265, 312, sec. 7.2].
Motivations for building a string field theory [236, sec. 4].
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Part 1

Point-particle
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Chapter 2

Classical relativistic
point-particle

One considers a D-dimensional spacetime with coordinates z# = (¢,z° = x) with signature

mostly plus and metric
N = diag(—1,1,...,1). (2.1)

The objective of this chapter is to describe the different formulation of a relativistic particle
which travels in this spacetime along a worldline C.

2.1 Proper-time action
The invariant line element s is expressed in terms of the coordinates X* as
ds? = 1, dX*dX” = —dT? + dX>. (2.2)

Since a particle cannot go backward in time, it means that T > 0 and going in the rest-frame
(where X = 0) shows that a physical particle is timelike (massive) or null (massless)

massive : ds? <0, massless :  ds® = 0. (2.3)
Accordingly the proper-time t is defined by
d? = —ds?. (2.4)

Since the action is a (Lorentz) scalar, it is natural to postulate that it should be
proportional to the invariant element (integrated over the worldline) because it is the only
available scalar

S = m/cds. (2.5)

The problem with this action is that the Lagrangian is constant and thus the equations of
motion are identically zero. Moreover the previous action cannot describe massless particles
since the limit m — 0 or ds — 0 is singular. The first aspect is remedied by introducing an
explicit parametrization of the worldline, while more work is needed to describe massless
particles.
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2.2 Parametrization and non-linear action

The wordline is parametrized by 7 (which is not necessarily the proper-time 7)' which is
monotonically increasing along the wordline. The (spacetime) path followed by the particle
is denoted by X*(7), where the uppercase helps to distinguish between the wordline (specific
to the particle under concerned) from the coordinates (labels of the spacetime). Derivation
with respect to 7 is indicated by a dot

= —. 2.6
dr (26)
The velocity of the particle corresponds to the changes of its position as 7 changes
dx# .
B— = XH, 2.7
ut = = 2.7)
In terms of these variables the derivative of the invariant reads
. ds)? y
§ = (5) = Nuut'u’. (2.8)
The definition of the proper-time (2.4) is equivalent to
t=1. (2.9)
This implies that the variation of the proper-time is positive
dt >0 (2.10)

and thus it can be selected to parametrize the worldline. Integrating the relation gives
T =1+ t. (2.11)

In this parametrization the velocity is normalized to unity

(%)2 —1 (2.12)

More generally one can consider a constant coefficient of proportionality { = « as the simplest
types of parametrization
T =at+t. (2.13)

In terms of the worldline parameter the action and the associated Lagrangian read

. dX+ dXv
= X, X L=—m\/— . 2.14
S /Cd'r L(X, X), A/ =N o dr ( )

This action is obviously invariant under the Lorentz group SO(D, 1).

Computation — Equation (2.14)
Starting from (2.5)

S fas=m [ar (~2) = /(h@.

Inserting a minus sign is necessary since § < 0 and the argument of the squareroot must

'In (special) relativity textbooks, the worldline parameter is either denoted by another symbol (such
that A or s), or is taken to be the proper-time. We don’t follow these conventions in order to match the
notations of string theory in the worldsheet formalism where 7 and o parametrize the worldsheet without
being proper-coordinates. It will be explicitly indicated when 7 is taken to be the proper-time.
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‘ be positive. The result follows by plugging the expression (2.2) of ds? in terms of X*.

The parameter m can be identified with the mass of the particle. First dimensional
analysis indicates that it has the dimension of a mass [m] = M since [S] =1 and [r] = M~!.
This can be further motivated by taking the non-relativistic limit with 7 = ¢ = T (static

gauge)
dx\? m (dX 2

The second term represents the kinetic energy of a non-relativistic particle of mass m, while
the first term can be identified with a constant potential (mass energy). One can also put this

in perspective with the definition of the conjugate momenta. Note that the action satisfies
the bound

S<-m / dt (2.16)
since v1 —v2 < 1.

The action (2.14) has several characteristics which make it difficult to study:

o it is non-polynomial since the variable appears under a squareroot and as such it is
non-local (infinite number of time derivatives);

e the massless limit m — 0 is singular;

« the worldline geometry is not parametrized explicitly: while this can be an asset (since
parametrization independence is ensured) this can also make more difficult to study
the set of possible worldlines.

The last problem can be solved by introducing a metric on the worldline. This will also
provide a starting point to address the other two issues.

2.2.1 Induced metric

Given a path X*(7), a metric is induced on the worldline by pulling back the spacetime
metric )
dX#dx” dt
dr dr dr

and this implies in particular the equality of the worldline and spacetime invariant intervals

9rr = Nuv (217)

ds® = n,, dX*dX" = g, d7°. (2.18)

Note that the worldline metric has only one component since the worldline C' is a one-
dimensional manifold (without spatial directions). Moreover it is convenient to work with

the einbein e(7)
dt

grr=—e(r)’,  e=, (2.19)

where the minus sign follows from 7, = —1.
The induced metric (2.17) is recognized to be the argument of the squareroot in (2.14).
The action (2.14) becomes

S = —m/dT V—g= —m/dTe. (2.20)
This action enjoys an invariance under reparametrization of 7

T = f(7). (2.21)
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2.2.2 Hamiltonian

The conjugate momenta are given by

y .
pa=OL __mXl  _myu (2.22)

oxw ) _xux, ¢

and Euler-Lagrange equations say it is conserved

dp,
— =0. 2.23
dr ( )
The Hamiltonian is defined by )
H=X*p, - L. (2.24)
The momentum norm is
p* = pup* = —m? (2.25)
which imposes a constraint
¢(p) = p* +m* =0. (2.26)

Equivalently the equation p, = f”(X ¥) is not invertible. This is another formulation of
the constraint found between the equations of motion, and by comparing it means that the
Hamiltonian vanishes

H=—(p*+m?) =0. (2.27)

m
2.3 Polynomial action

2.3.1 Dirac procedure

The Dirac procedure permits to build an Hamiltonian for constrained systems. Let A be a
Lagrange multiplier, then the Dirac hamiltonian is

H =\H = %w. (2.28)

The Hamilton equation gives the relation between X* and Dy

. OH' e
XH = =2\ — p. 2.29
o, P (2.29)
The associated (first-order) Lagrangian is
/ v v Ae o 2

L' = X"pu—H = X'p, — = (p* +m?). (2.30)

Fgne™ (X Ku
L'=2e% ((2,\6)2 1). (2.31)

For only the combination 2)\e appears, it means that both are not independent variables and
one can redefine e to absorb 2\, which amounts to set

A=s. (2.32)

The final form of the action is obtained by rescaling

e—rme (2.33)
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such that

XrX
S’=%/dre( e2”—m2>. (2.34)

The massless limit m — 0 is well-defined and yield the action
1 .
§'=3 / dre ' X*X,. (2.35)

The interpretation of S’ can be made easier by replacing the einbein by the metric (2.19)
(with "7 = e72)

S/ = —% /dT \/—_9 gTTa‘rX“aTXM - % /dT VvV —Vrr (236)

This is the action for D scalar fields X#(7) living on the 1-dimensional space C' and minimally
coupled to 1-dimensional gravity with a cosmological constant —m/2.

2.4 Bibliography

« relativistic particle [16, 301, sec. 1.1, 3, chap. 1].
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Part 11

Bosonic string theory
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Chapter 3

Worldsheet path integral:
vacuum amplitudes

In this chapter, we develop the path integral quantization for a generic closed string theory
in worldsheet Euclidean signature. We focus on the vacuum amplitudes, leaving scattering
amplitudes for the next chapter. This allows to focus on the definition and gauge fixing of
the path integral measure.

The exposition differs from most traditional textbooks in three ways: 1) we consider a
general matter CFT, 2) we consider the most general treatment (for any genus) and 3) we
don’t use complex coordinates but always a covariant parametrization.

The derivation is technical and the reader is encouraged to not stop at this chapter in case
of difficulties and to proceed forward: most concepts will be reintroduced from a different
point of view later in other chapters of the review.

3.1 Worldsheet action and symmetries

The string worldsheet is a Riemann surface W = ¥ of genus g: the genus counts the number
of holes or handles. Coordinates on the worldsheet are denoted by o* = (7,0). When there
is no risk of confusion, o denotes collectively both coordinates. Since closed strings are
considered, the Riemann surface has locally the topology of a cylinder, with the spatial
section being circles S with radius taken to be 1, such that

o € 0,2m), o~ o+2T. (3.1)

The string is embedded in the D-dimensional spacetime M with metric G, through maps
XH(0*): W > Mwith p=0,...,D —1.
The Nambu—Goto action is the starting point of the worldsheet description:

2ma! 8o Ogb’

Sna[XH] = / dza\/detGW(X)axuaXV (3.2)

where o is the Regge slope (related to the string tension and string length). However,
quantizing this action is difficult because it is highly non-linear. To solve this problem, a
Lagrange multiplier is introduced to remove the squareroot. This auxiliary field corresponds
to an intrinsic worldsheet metric g,5(c). The worldsheet dynamics is described by the
Polyakov action:

oX* oxv

1 a
Splg, X" = - /d20\/§g bG,“,(X)WW, (3.3)
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which is classically equivalent to the Nambu—Goto action (3.2). In this form, it is clear that
the scalar fields X*(a) (u = 0,...D — 1) characterize the string theory under consideration
in two ways. First, by specifying some properties of the spacetime in which the string
propagates (for example, the number of dimensions is determined by the number of fields
X*), second, by describing the internal degrees of freedom (vibration modes).!

But, nothing prevents to consider a more general matter content in order to describe a
different spacetime or different degrees of freedom. In Polyakov’s formalism, the worldsheet
geometry is endowed with a metric gq;(0) together with a set of matter fields living on it.
The scalar fields X* can be described by a general sigma model which encodes the embedding
of the string in the D non-compact spacetime dimensions, and other fields can be added, for
example to describe compactified dimensions or (spacetime) spin. Different sets of fields (and
actions) correspond to different string theories. However, to describe precisely the different
possibilities, we first have to understand the constraints on the worldsheet theories and to
introduce the conformal field theory description (Chapter 6 and part VII). In this chapter
(and in most of the book), the precise matter content is not important and we will denote
the fields collectively as ¥ (o).

Before discussing the symmetries, let’s introduce a topological invariant which will be
needed throughout the text: the Fuler characteristics. It is computed by integrating the
Riemann curvature R of the metric g, over the surface ¥:

1
Xg =X(Zg) :=2—-2g = 4_/ dzg\/ng (3.4)
78 b

where g is the genus of the surface. Oriented Riemann surfaces without boundaries are
completely classified (topologically or as complex manifolds) by their Euler characteristics
Xg, Or equivalently by their genus g.

In order to describe a proper string theory, the worldsheet metric g,;(0) should not
be dynamical. This means that the worldsheet has no intrinsic dynamics and that no
supplementary degrees of freedom are introduced when parametrizing the worldsheet with a
metric. A solution to remove these degrees of freedom is to introduce gauge symmetries with
as many gauge parameters as there are of degrees of freedom. The simplest symmetry is
invariance under diffeomorphisms: indeed, the worldsheet theory is effectively a QFT coupled
to gravity and it makes sense to require this invariance. Physically, this corresponds to the
fact that the worldsheet spatial coordinate o used along the string and worldsheet time are
arbitrary. However, diffeomorphisms alone are not sufficient to completely fix the metric.
Another natural candidate is Weyl invariance (local rescalings of the metric).

A diffeomorphism f € Diff(¥,) acts on the fields as

o' = f(a?), g'(d') = f*g(0), V'(o') = f*¥(o), (3.5)
where the star denotes the pullback by f: this corresponds simply to the standard coordinate
transformation where each tensor index of the field receives a factor 0®/9c’®. In particular,
the metric and scalar fields transform explicitly as

;o Ho¢ o e
gup(0’) = 9072 Jo’® ged(0), X"(0") = X" (o). (3.6)

The index p is inert since it is a target spacetime index: from the worldsheet point of view,
it just labels a collection of worldsheet scalar fields. Infinitesimal variations are generated by
vector fields on Xg:

00 =&, 06U =LV,  degab = LeGab, (3.7)

LObviously, the vibrational modes are also constrained by the spacetime geometry.
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where L¢ is the Lie derivative” with respect to the vector field £ € ?iff(E,) ~ TS,. The Lie
derivative of the metric is

‘Cigab = £°0cGab + 9acOb€® + Goc0u€’ = Vabp + Vip&a. (3-8)

The Lie algebra generates only transformations in the connected component Diffy(2,) of the
diffeomorphism group which contains the identity.

Transformations not contained in Diffo(X,) are called large diffeomorphisms: this includes
reflections, for example. The quotient of the two groups is called the modular group I'y (also
mapping class group or MCG):

_ Diff(%,)

Fg = Wo(Dlﬂ(Eg)) = m

(3.9)
It depends only on the genus g of the Riemann surface, but not on the metric. It is an
infinite discrete group for genus g > 1 surfaces; in particular, T’y = SL(2,Z).

A Weyl transformation e € Weyl(Z,) corresponds to a local rescaling of the metric and
leaves the other fields unaffected®

2w(o)

9ap(0) =V gap(0), (o) = ¥(0). (3.10)

The exponential parametrization is generally more useful, but one should remember that it
is €2 and not w which is an element of the group. The infinitesimal variation reads

6wgab = 2w Gab, ‘Sw\I’ =0 (311)

where w € weyl(X) ~ F(3,) is a function on the manifold. Two metrics related in this way
are said to be conformally equivalent. The conformal structure of the Riemann surface is
defined by
Met(X%,)
Conf(X%,) = ——9L, 3.12
( g ) eyl(zg) ( )

where Met(X,) denotes the space of all metrics on ¥,. Each element is a class of conformally
equivalent metrics.

Diffeomorphisms have two parameters £* (vector field) and Weyl invariance has one,
w (function). Hence, this is sufficient to locally fix the three components of the metric
(symmetric matrix) and the total gauge group of the theory is the semi-direct product

G := Diff(X,) x Weyl(X,). (3.13)
Similarly, the component connected of the identity is written as
Gy := Diffy(2,) x Weyl(%,). (3.14)

The semi-direct product arises because the Weyl parameter is not inert under diffeomor-
phisms. Indeed, the combination of two transformations is

g =r (e2""g) = ezf*“’f*g, (3.15)

such that the diffeomorphism acts also on the conformal factor.

2For our purpose here, it is sufficient to accept the definition of the Lie derivative as corresponding to the
infinitesimal variation.

3For simplicity, we consider only fields which do not transform under Weyl transformations, which
excludes fermions.
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The combination of transformations (3.15) can be chosen to fix the metric in a convenient
gauge. For example, the conformal gauge reads

9an(0) = €7 gap(0), (3.16)

where §gp is some (fixed) background metric and ¢(o) is the conformal factor, also called the
Liouwville field. Fixing only diffeomorphisms amount to keep ¢ arbitrary: the latter can then
be fixed with a Weyl transformation. For instance, one can adopt the conformally flat gauge

Jab = dab, ¢ arbitrary (3.17)
with a diffeomorphism, and then reach the flat gauge
Gab = dab, ¢=0 (3.18)

with a Weyl transformation. Another common choice is the uniformization gauge where §
is taken to be the metric of constant curvature on the sphere (g = 0), on the plane (g = 1)
or on the hyperbolic space (g > 1). All these gauges are covariant (both in spacetime and
worldsheet).

Remark 3.1 (Active and passive transformations) Usually, symmetries are described
by active transformations, which means that the field is seen to be changed by the transforma-
tion. On the other hand, gauge fixing is seen as a passive transformation, where the field is
expressed in terms of other fields (i.e. a different parametrization). These are mathematically
equivalent since both cases correspond to inverse elements, and one can choose the most
convenient representation. We will use indifferently the same name for the parameters to
avoid introducing minus signs and inverse.

Remark 3.2 (Topology and gauge choices) While it is always possible to adopt locally
the flat gauge (3.18), it may not be possible to extend it globally. The can be seen intuitively
from the fact that the sign of the curvature is given by the one of 1 — g, but the curvature of
the flat metric is zero: curvature must then be localized somewhere and this prevents from
using a single coordinate patch.

The final step is to write an action Sy,[g, ¥] for the matter fields. According to the
previous discussion, it must have the following properties:

e local in the fields;

e renormalizable;

e mnon-linear sigma models for the scalar fields;
e periodicity conditions;

e invariant under diffeomorphisms (3.5);

e invariant under Weyl transformations (3.10).

The latter two conditions are summarized by
Smlf*g, f*9] = Smlg,¥],  Sm[e*g,¥] = Sp[g, ¥]. (3.19)

The invariance under diffeomorphisms is straightforward to enforce by using only covariant
objects. Since the scalar fields represent embedding of the string in spacetime, the non-linear
sigma model condition means that spacetime is identified with the target space of the sigma
model, of which D dimensions are non-compact, and the spacetime metric appears in the
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matter action as in (3.3). The isometries of the target manifold metric become global
symmetries of S,,: while they are not needed in this chapter, they will have their importances
in other chapters. Finally, to make the action consistent with the topology of the worldsheet,
the fields must satisfy appropriate boundary conditions. For example, the scalar fields X*
must be periodic for the closed string:

XH*(1,0) ~ X*(1,0 + 27). (3.20)

Remark 3.3 (2d gravity) The setup in two-dimensional gravity is exactly similar, except
that the system is, in general, not invariant under Weyl transformations. As a consequence,
one component of the metric (usually taken to be the Liouville mode) remains unconstrained:
in the conformal gauge, (3.16) only § is fized.

The symmetries (3.19) of the action have an important consequence: they imply that
the matter action is conformally invariant on flat space gqp = 0qp- A two-dimensional
conformal field theory (CFT) is characterized by a central charge c,,: roughly, it is a
measure of the quantum degrees of freedom. The central charge is additive for decoupled
sectors. In particular, the scalar fields X* contribute as D, and it is useful to define the
perpendicular CFT with central charge ci,; as the matter which does not describe the
non-compact dimensions:

cm = D + cint.- (3.21)

This will be discussed in length in Part VII. For this chapter and most of the book, it is
sufficient to know that the matter is a CFT of central charge ¢, and includes D scalar fields
XH:

matter CFT parameters: D, cp,. (3.22)

The energy—momentum is defined by
4 6S,,
\/g ) gab :
The variation of the action under the transformations (3.7) vanishes on-shell if the energy—
momentum tensor is conserved

T ap i= (3.23)

VT e =0 (on-shell). (3.24)

On the other hand, the variation under (3.11) vanishes off-shell (i.e. without using the
equations of motion) if the energy—momentum tensor is traceless:

9T ay =0  (off-shell). (3.25)

The conserved charges associated to the energy—momentum tensor generate worldsheet
translations

P® = / do T2 (3.26)
The first component is identified with the worldsheet Hamiltonian P® = H and generates
time translations, the second component generates spatial translations.

Remark 3.4 (Tracelessness of the energy—momentum tensor) In fact, the trace can
also be proportional to the curvature

9% Tmab x R. (3.27)

Then, the equations of motion are invariant since the integral of R is topological. The theory
is invariant even if the action is not. Importantly, this happens for fields at the quantum
level (Weyl anomaly), for the Weyl ghost field (Section 3./) and for the Liouville theory
(two-dimensional gravity coupled to conformal matter).
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3.2 Path integral

The quantization of the system is achieved by considering the path integral, which yields the
genus-g vacuum amplitude (or partition function):

Zy = / ot _ 5 9,  Zmlg] = / dy ¥ e~ 5mlo?] (3.28)
Qgaugeg]

at fixed genus g (not to be confused with the metric). The integration over g is performed
over all metrics of the genus-g Riemann surface X4: gq € Met(X,). The factor Qgauge[d]
is a normalization inserted in order to make the integral finite: it depends on the metric
(but only through the moduli parameters, as we will show later) [68, p. 931], which explains
why it is included after the integral sign. Its value will be determined in the next section by
requiring the cancellation of the infinities due to the integration over the gauge parameters.
This partition function corresponds to the g-loop vacuum amplitude: interactions and their
associated scattering amplitudes are discussed in Section 4.1.

In order to perform the gauge fixing and to manipulate the path integral (3.28), it is
necessary to define the integration measure over the fields. Because the space is infinite-
dimensional, this is a difficult task. One possibility is to define the measure implicitly through
Gaussian integration over the field tangent space (see also Appendix C.1). A Gaussian integral
involves a quadratic form, that is, an inner-product (or equivalently a metric) on the field
space. The explanation is that a metric also defines a volume form, and thus a measure.
To reduce the freedom in the definition of the inner-product, it is useful to introduce three
natural assumptions:

1. wultralocality: the measure is invariant under reparametrizations and defined point-wise,
which implies that it can depend on the fields but not on their derivatives;

2. invariant measure: the measure for the matter transforms trivially under any symmetry
of the matter theory by contracting indices with appropriate tensors;

3. free-field measure: for fields other than the worldsheet metric and matter (like ghosts,
Killing vectors, etc.), the measure is the one of a free field.

This means that the inner-product is obtained by contracting the worldsheet indices of the
fields with a tensor built only from the worldsheet metric, by contracting other indices (like
spacetime) with some invariant tensor (like the spacetime metric), and finally by integrating
over the worldsheet.

We need to distinguish the matter fields from those appearing in the gauge fixing procedure.
The matter fields live in the representation of some group under which the inner-product is
invariant: this means that it is not possible to define each field measure independently if the
exponential of inner-products does not factorize. As an example, on a curved background:
dX #I1 , dX*. However, we will not need to write explicitly the partition function for
performing the gauge fixing: it is sufficient to know that the matter is a CFT. In the gauge
fixing procedure, different types of fields (including the metric) appear which don’t carry
indices (beyond the worldsheet indices). Below, we focus on defining a measure for each of
those single fields (and use free-field measures according to the third condition).

Considering the finite elements §®; and d®2 of tangent space at the point ® of the state
of fields, the inner-product (-,-), and its associated norm | - |, read

(54, 60,), = / 0/G7,(681,68,),  |0B[2 := (6, 50),, (3.29)

where 7, is a metric on the d® space. It is taken to be flat for all fields except the metric itself,
that is, independent of ®. The dependence in the metric ensures that the inner-product is
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diffeomorphism invariant, which in turns will lead to a metric-dependent but diffeomorphism
invariant measure. The functional measure is then normalized by a Gaussian integral:

/ d 6P e~ 2(0%:0)s — I (3.30)

\/det’yg.

This, in turn, induces a measure on the field space itself:

/ d®+/det v, (3.31)

The determinant can be absorbed in the measure, such that
/ 4,60 e H6%50)5 _ (3.32)

In fact, this normalization and the definition of the inner-product is ambiguous, but the
ultralocality condition allows to fix uniquely the final result (Section 3.3.4). Moreover, such
a free-field measure is invariant under field translations

8(0) — (o) = ®(0) + £(0). (3.33)

The most natural inner-products for single scalar, vector and symmetric tensor fields are

(6f,0f)g == / d%o/g0f> (3.34a)
6V, 8V, == / d%0/g gapdV VY, (3.34b)
(6T b, 0Tup) g = / d%0/g G4ST 40 Teq, (3.34c)

where the (DeWitt) metric for the symmetric tensor is
Gabcd = Gibcd 4 ’U/gabQCd, G(Jl_bcd = gacgbd 4 gadgbc _ gabgcd’ (335)

with u a constant. The first term G is the projector on the traceless component of the
tensor. Indeed, consider a traceless tensor g*®Ty, = 0 and a pure trace tensor Ag,s, then we

have:
G®lT g = G¥T g = 2T,  G°%(Ageq) = 2u (Agap)- (3.36)

While all measures are invariant under diffeomorphisms, only the vector measure is
invariant under Weyl transformations. This implies the existence of a quantum anomaly (the
Weyl or conformal anomaly): the classical symmetry is broken by quantum effects because
the path integral measure cannot respect all the classical symmetries. Hence, one can expect
difficulties for imposing it at the quantum level and ensuring that the Liouville mode in
(3.16) remains without dynamics.

The metric variation (symmetric tensor) is decomposed in its trace and traceless parts

1
6gab = Gab oA + 69;},, 0A = 5 gabagabv gabég(_zj_b =0. (337)
In this decomposition, both terms are decoupled in the inner-product

2
|69asl; = 4ulSAJ; + 169301, (3.38)
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where the norm of JA is the one of a scalar field (3.34a). The norm for g7 is equivalent
to (3.34c) with u = 0 (since it is traceless). Requiring positivity of the inner-product for a
non-traceless tensor imposes the following constraint on u:

u>0. (3.39)

One can absorb the coefficient with u in §A, which will just contribute as an overall factor:
its precise value has no physical meaning. The simple choice u = 1/4 sets the coefficient of
|6A|§ to 1 in (3.38) (another common choice is u = 1/2). Ultimately, this implies that the
measure factorizes as

dggar = dgAdggay- (3.40)

Computation — Equation (3.38)

G¥ §G.16Gea = (Gr_szcd i ugabgcd) (9ab OA + 692 (gea OA + 5gcld)
= (2ug™ 6A + G*U5g%) (gea OA + 5g5)
= 4u (§0)? + G459 692,
= 4ubA® + 2¢%°g"5g 6.

Remark 3.5 Another common parametrization is
Gabcd — gacgbd + Cgabng. (341)
It corresponds to (3.35) up to a factor 1/2 and setting u =1+ 2c.

Remark 3.6 (Matter and curved background measures) As explained previously, mat-
ter fields carry a representation and the inner-product must yield an invariant combination.
In particular, spacetime indices must be contracted with the spacetime metric G, (X) (which
is the non-linear sigma model metric appearing in front of the kinetic term) for a general
curved background. For example, the inner-product for the scalar fields X* is

(6XH, 6XH), = / d%04/9 G (X)5XH5X". (3.42)

It is not possible to normalize anymore the measure to set det G(X) = 1 like in (3.32) since
it depends on the fields. On the other hand, this factor is not important for the manipulations
performed in this chapter. Any ambiguity in the measure will again corresponds to a
renormalization of the cosmological constant [68, p. 923]. Moreover, as explained above, it is
not necessary to write explicitly the matter partition function as long as it describes a CFT.

3.3 Faddeev—Popov gauge fixing

The naive integration over the space Met(X,) of all metrics of ¥, (note that the genus is
fixed) leads to a divergence of the functional integral since equivalent configurations

(f'g,f )~ (9,9),  (*g,2)~(9,9) (3.43)

gives the same contribution to the integral. This infinite redundancy causes the integral
to diverge, and since the multiple counting is generated by the gauge group, the infinite
contribution corresponds to the volume of the latter. The Faddeev—Popov procedure is a
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means to extract this volume by separating the integration over the gauge and physical
degrees of freedom

d(fields) = Jacobian x d(gauge) x d(physical). (3.44)

The space of fields (g, ¥) is divided into equivalence classes and one integrates over only one
representative of each class (gauge slice), see Figure 3.1. This change of variables introduces
a Jacobian which can be represented by a partition function with ghost fields (fields with
a wrong statistics). This program encounters some complications since G is a semi-direct
product and is non-connected.

Example 3.1 — Gauge redundancy
A finite-dimensional integral which mimics the problem is

Z = / dzdye (v)°. (3.45)
R2

One can perform the change of variables

r:a‘,’—y, y=a (346)

/ da / YT Vol(R), (3.47)

and Vol(R) is to be interpreted as the volume of the gauge group (translation by a real
number a).

such that

Remark 3.7 Mathematically, the Faddeev—Popov procedure consists in identifying the orbits
(class of equivalent metrics) under the gauge group G and to write the integral in terms of
G-invariant objects (orbits instead of individual metrics). This can be done by decomposing
the tangent space into variations generated by G and its complement. Then, one can define
a foliation of the field space which equips it with a fibre bundle structure: the base is the
push-forward of the complement and the fibre corresponds to the gauge orbits. The integral is
then defined by selecting a section of this bundle.

3.3.1 Metrics on Riemann surfaces

According to the above procedure, each metric g,» € Met(X,) has to be expressed in
terms of gauge parameters (£ and w) and of a metric §,, which contains the remaining
gauge-independent degrees of freedom. As there are as many gauge parameters as metric
components (Section 3.1), one could expect that there are no remaining physical parameters
and then that § is totally fixed. But, this is not the case and the metric § depends on a
finite number of parameters ¢; (moduli). The reason for this is topological: while locally it is
always possible to completely fix the metric, topological obstructions may prevent doing it
globally. This means that not all conformal classes in (3.12) can be (globally) related by a
diffeomorphism.

The quotient of the space of metrics by gauge transformations is called the moduli space

Met(X g)
G

Accordingly, its coordinates ¢; with ¢ = 1,...,dimg M, are called moduli parameters. The
Teichmiiller space Ty is obtained by taking the quotient of Met(3,) with the component

Mg = (3.48)
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gauge orbit

gauge slice

[9] classes

Figure 3.1: The space of metrics decomposed in gauge orbits. Two metrics related by a
gauge transformation lie on the same orbit. Choosing a gauge slice amounts to pick one
metric in each orbit, and the projection gives the space of metric classes.

connected to the identity

Met (%)
— -4
g GO (3 9)
The space 7y is the covering space of M:
My = E, (3.50)
Ly

where I'y is the modular group defined in (3.9). Both spaces can be endowed with a complex
structure and are finite-dimensional [210]:

0 9=0,
My = dimg My = dimgr Ty = { 2 g=1, (3.51)
In particular, their volumes are related by
1
dMst = — [ dMst (3.52)
My Ty JTg

where Qr is the volume of T'y.

We will need to extract volumes of different groups, so it is useful to explain how they
are defined. A natural measure on a connected group G is the Haar measure dg, which is the
unique left-invariant measure on G. Integrating the measure gives the volume of the group

Qa :=Ldg=Ld(hg), (3.53)

for any h € G. Given the Lie algebra g of the group, a general element of the algebra is a
linear combinations of the generators T; with coefficients o

a=a'T;. (3.54)
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Group elements can be parametrized in terms of o through the exponential map. Moreover,
since a Lie group is a manifold, it is locally isomorphic to R™: this motivates the use of a flat
metric for the Lie algebra, such that

Q¢ = / do := / Hdo/. (3.55)

Finally, it is possible to perform a change of coordinates from the Lie parameters to coordinates
z on the group: the resulting Jacobian is the Haar measure for the coordinates x.

Remark 3.8 While T, is a manifold, this is not the case of My for g > 2, which is an
orbifold: the quotient by the modular group introduces singularities [212].

Remark 3.9 (Moduli space and fundamental domain) Given a group acting on a
space, o fundamental domain for a group is a subspace such that the full space is gen-
erated by acting with the group on the fundamental domain. Hence, one can view the moduli
space Mgy as a fundamental domain (sometimes denoted by F4) for the group T'y and the
space Tg.

In the conformal gauge (3.16), the metric gqp can be parametrized by

9ab = 050 (1) = €77 £* G (t) = £ (€2 Gan(t)) (3.56)

where ¢ := w and t denotes the dependence in the moduli parameters. To avoid surcharging
the notations, we will continue to write g when there is no ambiguity. In coordinates, this is
equivalent to:

8o’ o O./d

307 9ob 9ea(0’;t). (3.57)

9ab(0) = 957 (038) = D giy(051),  Gyloit) =
Remark 3.10 §trz'ctly speaking, the matter fields also transform and one should write
U =00 .= f*F and include them in the change of integration measures of the following
sections. But, this does not bring any particular benefits since these changes are trivial
because the matter is decoupled from the metric.

Remark 3.11 Although the metric cannot be completely gauge fized, having just a finite-
dimensional integral is much simpler than a functional integral. In higher dimensions, the
gauge fizing does not reduce that much the degrees of freedom and a functional integral over
§ remains (in similarity with Yang—Mills theories).

The corresponding infinitesimal transformations are parametrized by (¢,£,0t;). The
variation of the metric (3.56) can be expressed as

6gab = 2¢gab + Vagb + bea + 6tiaigaba (358)

which is decomposed in a reparametrization (3.7), a Weyl rescaling (3.11), and a contribution
from the variations of the moduli parameters. The latter are called Teichmiiller deformations
and describe changes in the metric which cannot be written as a combination of diffeomorphism
and Weyl transformation. Only the last term is written with a delta because the parameters
& and ¢ are already infinitesimal. There is an implicit sum over 7 and we have defined

=5 (3.59)
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According to the formula (3.55), the volumes Qpig, [g] and Qwey1[g] of the diffeomorphisms
connected to the identity and Weyl group are

i lo] = [ o, (3.60a)

Qweptlg] i= / dyo. (3.60b)

The full diffeomorphism group has one connected component for each element of the modular
group I'y, according to (3.9): the volume Qpig[g] of the full group is the volume of the
component connected to the identity times the volume Qr,

Qpiglg] = Qpis, [9] O, - (3.60c)

We have written that the volume depends on g: but, the metric itself is parametrized in terms
of the integration variables, and thus the LHS of (3.60) cannot depend on the variable which
is integrated over: Qp;g, can depend only on ¢ and Qwey1 only on £. But, all measures (3.34Db)
are invariant under diffeomorphisms, and thus the result cannot depend on £&. Moreover, the
measure for vector is invariant under Weyl transformation, which means that Qp;g, does not
depend on ¢. This implies that the volumes depend only on the moduli parameters

Opifr, [9] := Wi, [€2%9] = Wi, [6],  Qweyi[9] = Qwey1[Led] = Qwey[§].  (3.61a)

For this reason, it is also sufficient to take the normalization factor {2zayge to have the same
dependence:
anuge [g] = anuge[g]' (361b)

These volumes are also discussed in Section 3.3.4.

Computation — Equation (3.61)

i, [6245] = / Qo g = / dgrogt = / 4yt = Qi [,

Qwey1[Led] = / de2o s 5¢ = / de20 3¢ = Qweyi[g]-

Remark 3.12 (Free-field measure for the Liouville mode) The explicit measure (3.60b)
of the Liouville mode is complicated since the inner-product contains an exponential of the
field:

16¢|° = / d%0,/gd¢? = / d?0+/§e*64°. (3.62)

It has been proposed by David—Distler—-Kawai [55, 72], and later checked explicitly [65, 66,
196], how to rewrite the measure in terms of a free measure weighted by an effective action.
The latter is identified with the Liowville action (Section 3.3.3).

In principle, we could follow the standard Faddeev—Popov procedure by inserting a delta
function for the gauge fixing condition

Fap = gap — 057 (1), (3.63)

with gfj;"”) (t) defined in (3.56). However, we will take a detour to take the opportunity to
study in details manipulations of path integrals and to understand several aspects of the
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geometry of Riemann surfaces. In any case, several points are necessary even when going the
short way, but less apparent.

In order to make use of the factorization (3.40) of the integration measure, the variation
(3.58) is decomposed into its trace (first term) and traceless parts (last two terms) (3.37)

(Sgab = 2A gab + (Plﬁ)ab + 8t; Wiab, (364)
where*
(Plg)ab = V& + Vo — gabvcgca (3-653)
1
Miab = Oigab — 3 Jab 9°%0i9ca, (3.65b)
. 1 1
A=A+ 3 6t; 90igan, A=o¢+ 3 V. £°. (3.65¢)

The objects u; are called Beltrami differentials and correspond to traceless Teichmiiller
deformations (the factor of 1/2 comes from the symmetrization of the metric indices). The
decomposition emphasizes which variations are independent from each other. In particular,
changes to the trace of the metric due to a diffeomorphism generated by £ or a modification
of the moduli parameters can be compensated by a Weyl rescaling.

One can use (3.40) to replace the integration over g,; by one over the gauge parameters
¢ and ¢ and over the moduli ¢; since they contain all the information about the metric:

Zg= /dMgtdgAdg(Plg) Qgauge [9]7" Zumlg]. (3.66)

It is tempting to perform the change of variables

such that o
dg(Plf) dgA = dgé‘ dg¢ AFP [g] (3.68)
where App|g] is the Jacobian of the transformation
_ 8(P1£’ A) _ Pl 0 _
Arplg] = det D) det (' ) =detPy. (3.69)

But, one needs to be more careful:

1. The variations involving P;£ and dt; are not orthogonal and, as a consequence, the
measure does not factorize.

2. P; has zero-modes, i.e. vectors such that P;¢ = 0, which causes the determinant to
vanish, det P, = 0.

A rigorous analysis will be performed in Section 3.3.2 and will lead to additional factors in
the path integral.

Next, if the actions and measures were invariant under diffeomorphisms and Weyl
transformations (which amounts to replace g by § everywhere), it would be possible to factor
out the integrations over the gauge parameters and to cancel the corresponding infinite
factors thanks to the normalization Qgauge[g]. A new problem arises because the measures
are not Weyl invariant as explained above and one should be careful when replacing the
metric (Section 3.3.3).

4For comparison, Polchinski [237] defines P; with an overall factor 1/2.
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3.3.2 Reparametrizations and analysis of P,

The properties of the operator P; are responsible for both problems preventing a direct
factorization of the measure; for this reason, it is useful to study it in more details.

The operator P; is an object which takes a vector v to a symmetric traceless 2-tensor T,
see (3.65a). Conversely, its adjoint PlJr can be defined from the scalar product (3.34c)

(T, Pyv)y = (PIT,v),, (3.70)

and takes symmetric traceless tensors to vectors. In components, one finds
(PIT) = —2V'T,. (3.71)
The Riemann-Roch theorem relates the dimension of the kernels of both operators [210]:

dim ker PlT — dimker P, = —3x, = 69 — 6. (3.72)

Teichmiiller deformations

We first need to characterize Teichmiiller deformations, the variations of moduli parameters
which lead to transformations of the metric independent from diffeomorphisms and Weyl
rescalings. This means that the different variations must be orthogonal for the inner-product
(3.34).

First, the deformations must be traceless, otherwise they can be compensated by a Weyl
transformation. The traceless metric variations dg which cannot be generated by a vector
field ¢ are perpendicular to P;€ (otherwise, the former would a linear combination of the
latter):

(69, P1€)g =0 = (Plég,&),=0. (3.73)

Since £ is arbitrary, this means that the first argument vanishes
Plsg =o. (3.74)
Metric variations induced by a change in the moduli ¢; are in the kernel of PlT
89 € ker P} (3.75)

Elements of ker PlJr are called quadratic differentials and a basis (not necessarily orthonor-
mal) of ker PIT is denoted as:

ker PlT = Span{¢;}, i=1,...,dimker Pf (3.76)

(these should not be confused with the Liouville field). The dimension of ker PlJr is in fact
equal to the dimension of the moduli space (3.51):

0 g=0,
dimg ker P} =M, = { 2 g=1, (3.77)
6g—6 g>1.

The last two terms in the variation (3.64) of dgqp are not orthogonal. Let’s introduce the
projector on the complement space of ker PlT

1

PP,

II:=P Pl1L (3.78)

51



The moduli variations can then be rewritten as
ot; Hni = ot; (1 — H)Nz + 0t; p; = ot; (1 — H)ﬂ, + 0t; P ;. (379)
The (; exist because IIyu; € Im P;, and they read

1
G = —— PTM. 3.80
P1TP1 ! (3.80)

The first term can be decomposed on the quadratic differential basis (3.76)

(1 = Tus = ¢;(M ™) ju(dr, bi)g (3.81)
where
Mij = (¢i7¢j)g~ (382)
Ultimately, the variation (3.64) becomes
6gab = (Plé)ab + QA Gab + Qiab 6ti- (383)
where _
§ =&+ Got, Qiab = Bjab (M) ji(Pk, p1i)g- (3.84)

Correspondingly, the norm of the variation splits in three terms since each variation is
orthogonal to the others:

16912 = 184, + 1Pl + |Qudtily. (3.85)
Since the norm is decomposed as a sum, the measure factorizes:
dygap = dgA dg(Pr€) dy(Qidt:). (3.86)
One can then perform a change of coordinates
(&, A, Qidt:) — (£, A, 8t;), (3.87)

where A was defined in (3.65¢). The goal of this transformation is to remove the dependence
in the moduli from the measures on the Weyl factor and vector fields, and to recover a
finite-dimensional integral over the moduli:

det(¢iu“‘j)9

V det(¢i7 ¢])g ’

where the determinants correspond to the Jacobian. The role of the determinant in the
denominator is to ensure a correct normalization when the basis is not orthonormal (in
particular, it ensures that the Jacobian is independent of the basis). Plugging this result in
(3.28) gives the partition function as

dyA dy(Pi€)d, (Q6t;) = dMotd A d, (Pi£) (3.88)

det(d)i’ ,Ufj)g
det(¢i, ¢;)g

The t; are integrated over the Teichmiiller space 7, defined by (3.49) because the vectors £
generate only reparametrizations connected to the identity, and thus the remaining freedom
lies in Met(X,)/Go. Next, we study how to perform the changes of variables to remove P;
from the measure.

1
z,= [ g [ana,pe) Znll. (3.89)

P gaugeld

52



Conformal Killing vectors

In this section, we focus on the dgA dy(Pi€) part of the measure and we make contact with
the rest at the end.

Infinitesimal reparametrizations generated by a vector field £* produce only transforma-
tions close to the identity. For this reason, integrating over all possible vector fields yields
the volume (3.60a) of the component of the diffeomorphism group connected to the identity:

/ dg€ = O, [9]- (3.90)

Remember that the volume depends only on the moduli, but obviously not on £ (integrated
over) nor ¢ (the inner-product (3.34b) is invariant). But, due to the existence of zero-modes,
one gets an integration over a subset of all vector fields, and this complicates the program,
as we discuss now.

Zero-modes £ of P, are called conformal Killing vectors (CKV)

O e Ky i=ker Py (3.91)
and satisfy the conformal Killing equation (see also Section 19.1):
(Pie@) gy = Vol + V4D — gy V£@° = 0. (3.92)

CKVs correspond to reparametrizations which can be absorbed by a change of the conformal
factor. They should be removed from the £ integration in order to not double-count the
corresponding metrics. The dimension of the zero-modes CKV space depends on the
genus [210]:

6 g=0,
Kg :=dimg Ky = dimpker P, ={2 g¢g=1, (3.93)
0 g>1

The associated transformations will be interpreted later (Chapter 19). The groups generated
by the CKVs are

g=0: Ko=SL(@2C), g=1: K, =U(@)xUQ). (3.94)

Note that the first group is non-compact while the second is compact.
A general vector £ can be separated into a zero-mode part and its orthogonal complement

¢

£=¢9+¢, (3.95)
such that

(9,¢), =0 (3.96)
for the inner-product (3.34b). Because zero-modes are annihilated by P;, the correct change
of variables in the partition function (3.66) maps to & only:

(P&, A) — (£, 9). (3.97)

Integrating over £ at this stage would double count the CKV (since they are already described
by the ¢ integration). The appropriate Jacobian reads

dgAdy(Pr§) = dgp dg€’ Arplg], (3.98)

where the Faddeev—Popov determinant is

Arp[g] = det %ﬁh’g) — det P, = \/det PP}, (3.99)
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the prime on the determinant indicating that the zero-modes are excluded. This brings the
partition function (3.89) to the form

Zy= [ At Oelil ™ [ dgpase dUbirtido ppplglZulgl.  (3.100)

— = A
T Vdet(ds, d;)g

Computation — Equation (3.98)
The Jacobian can be evaluated directly:

' O0(PE A (P 0
AFP[g]=detw=det (l% 1
2

G ) = det P,. (3.101)

As a consequence of det’ P1T = det’ Py, the Jacobian can be rewritten as:

! !
\/det PI P, = det Pr. (3.102)

It is instructive to derive this result also by manipulating the path integral. Consid-
ering small variations of the fields, one has:

1= / dy0A dy(Py5E) e~ AL —1P10E'T;
= AFP[Q] /d96¢d95§/ €_|5¢+%v0556|§—|1’155’|3

— Arplg] / dy86 dg8€’ e 1915 —(€ PIPLSE ),

, -1/2
= Applg] (det PlTPl) .

That the expression is equal to 1 follows from the normalization of symmetric tensors
and scalars (3.34) (the measures appearing in the path integral (3.89) arises without any
factor). The third equality holds because the measure is invariant under translations of
the fields, and we used the definition of the adjoint.

The volume of the group generated by the vectors orthogonal to the CKV is denoted as

Vi, l9] = Vo, 9] = [ (3.109)

As explained in the beginning of this section, one should extract the volume of the full Diff,
group, not only the volume Qbiﬂo [g]. Since the two sets of vectors are orthogonal, we can
expect the measures, and thus the volumes, to factorize. However, a Jacobian can and does
arise: its role it to take into account the normalization of the zero-modes. Denoting by 1; a
basis (not necessarily orthonormal) for the zero-modes

ker P, = Span{¢,}, i=1,...,Kg, (3.104)
the change of variables
& —¢ (3.105)
reads . d¢
d,¢ g (3.106)

- v/ det(v,bi, wj)g Qckv[g] ’
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where Qcky[g] is the volume of the CKV group. The determinant is necessary when the basis
is not orthonormal. The relation between the gauge volumes is then

Qpitt, (9] = 1/ det (i, ¥5)g Qeiv|g] Q;Diffo [9]- (3.107)

Note that the CKV volume is given in (3.111) and depends only on the topology but not on
the metric. By using arguments similar to the ones which lead to (3.61), one can expect that
each term is independently invariant under Weyl rescaling: this is indeed true (Section 3.3.3).

Computation — Equation (3.106)
Let’s expand £© on the zero-mode basis

£ = a1, (3.108)
where the «; are real numbers, such that one can write the changes of variables
& — (&, q). (3.109)

The Jacobian is computed from
1 :/dge—lfli :J/dg(O) de’ 1€ 131,
— J/Hdaie_aiaj(wi’d)j)g/d&le_lg,lz

= J (det(ti, v;)g) 2.

Note that the integration over the «; is a standard finite-dimensional integral. This
gives

d¢ = \/det(¢i,;)g A€’ [ deu. (3.110)

Since nothing depends on the «;, they can be integrated over as in (3.53), giving the
volume of the CKV group

Qacrlg] = /Hdai. (3.111)

Replacing the integration over &’ thanks to (3.106), the path integral becomes
AT— det ¢i7/1" Qc v -1
Z_q — / dMthgauge[g] 1 /dg¢dg§ ( J)g k [g]
7, Vdet(di, 5)g /det(ti, ¥;)q

Since the matter action and measure, and the Liouville measure are invariant under
reparametrizations, one can perform a change of variables

(f9,f*¢, f*¥) — (3,6, ¥) (3.113)

such that everything becomes independent of f (or equivalently £). Since the measure for &
is Weyl invariant, it is possible to separate it from the rest of the expression, which yields an
overall factor of Qpig,[g]. This brings the partition function to the form

Arp[g] Zmlg]- (3.112)

Qpift, 9] det(os, 144) Qeiv[g] 1
Zy= | dhig e | o ~ Arp(g] Zm 3.114
g /’f Byunseli] | Y et 051, ity o G

55



where the same symbol is used for the metric

b = 90 = 4. (3.115)

Since the expression is invariant under the full diffeomorphism group Diff (¥,) and not just

under its component Diffs(X,), one needs to extract the volume of the full diffeomorphism

group before cancelling it with the normalization factor. Otherwise, there is still an over-
counting the configurations. Using the relation (3.60c) leads to:

det(¢i, i)y Qaclg] ™
Vdet(di, d5)g /det(i,15)g
The volume {2r_ can be factorized outside the integral because it depends only on the genus

and not on the metric. Finally, using the relation (3.52), one can replace the integration over
the Teichmiiller space by an integration over the moduli space

L[ qm,, Qoiald]

Zy=— =
! Qr, J7, Qgaugeld]

dg¢

Arplg] Zm[g]- (3.116)

Qi [9] det(¢i,1t5)g  Qercelg]™
Zy= [ Mg d A Zuml9]- 3.117
‘ /M Saseld] ) ¥ it ), Ve, T Zmlel (31)

g9

3.3.3 Weyl transformations and quantum anomalies

The next question is whether the integrand depends on the Liouville mode ¢ such that
the Weyl volume can be factorized out. While the matter action has been chosen to be
Weyl invariant — see the condition (3.19) — the measures cannot be defined to be Weyl
invariant. This means that there is a Weyl (or conformal) anomaly, i.e. a violation of the
Weyl invariance due to quantum effects. Since the techniques needed to derive the results of
this section are outside the scope of this review, we simply state the results.

It is possible to show that the Weyl anomaly reads [68, p. 929]°

Arp [e2¢.(j] Z8h 5 14,0] Arp [g]

—=e 6 (31183;)
det’(¢’i7 ¢j)e2¢§ det((gu (gj)f]
Zm|e??g] = e 5991 7, 4], (3.118b)
where Sy, is the Liouville action
R 1 ~na A
Suld,6) = 3 [ EoV/5(a"0.000+ Fi), (3119)

where R is the Ricci scalar of the metric GJap- These relations require to introduce counter-
terms, discussed further in Section 3.3.4. The coeflicients c,, and c,p are the central charges
respectively of the matter and ghost systems, with:

Cgh = —26. (3.120)

This value will be derived in Section 22.2.
The inner-products between ¢; and p;, and between the 1;, and the CKV volume are
independent of ¢ [210, sec. 14.2.2, 68, p. 931]

det(oi, f1)e2e5 = det(Ps, 1), det(vhi, ¥j)eze5 = det(es, ¥5)5,
Qckv['32¢g] = Qckv[g]'

5The relation is written for Z,, since the action is invariant and is not affected by the anomaly.

(3.121)
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Remark 3.13 (Weyl and gravitational anomalies) The Weyl anomaly translates into

a non-zero trace of the quantum energy—momentum tensor

(9"'Tiu) = = R, (3.122)
12

where c is the central charge of the theory. The Weyl anomaly can be traded for a gravitational

anomaly, which means that diffeomorphisms are broken at the quantum level [1/9].

Inserting (3.118) in (3.117) yields

p ) 41-1 .
Zg — / dMgt Qlef[gl det(¢l7“])g Qckv[g] AFP[g] Zm[g] /dg¢e—?LSL[g,¢],
My Dgaugeld] \/det(i, d5)g /det(vi, by);
(3.123)
with the Liouville central charge
cr =26 — ¢ (3.124)

The critical “dimension” is defined to be the value of the matter central charge ¢, such that
the Liouville central charge cancels

ct=0 = c¢,=26. (3.125)

If the number of non-compact dimensions is D, it means that the central charge (3.21) of
the transverse CFT satisfies
Cint = 26 — D. (3.126)

In this case, the integrand does not depend on the Liouville mode (because Qp;g is
invariant under Weyl transformations) and the integration over ¢ can be factored out and
yields the volume of the Weyl group (3.60b)

/dg¢ = QWeyl [g] (3127)

Then, taking
Qgauge[9] = Qpir[9] X Qwey[d] (3.128)

removes the infinite gauge contributions and gives the partition function

det(ds, ) Qev[g] ™ o
Zg = dMs¢ 39 A Zl8]. 3.199
g /Mg Vdet(ds, d5)5 /det(vs,¥;)g FP[9] Zml[4] ( )

3.3.4 Ambiguities, ultralocality and cosmological constant

Different ambiguities remain in the previous computations, starting with the definitions of
the measures (3.32) and (3.34), then in obtaining the volume of the diffeomorphism (3.60a)
and Weyl (3.60b) groups, and finally in deriving the conformal anomaly (3.118).

These different ambiguities can be removed by renormalizing the worldsheet cosmological
constant. This implies that the action

Sulgl = / d%o/g (3.130)

must be added to the classical Lagrangian, where pg is the bare cosmological constant. This
means that Weyl invariance is explicitly broken at the classical level. After performing all
the manipulations, ug is determined by removing all ambiguities and enforcing invariance
under the Weyl symmetry at the quantum level. This amounts to set the renormalized
cosmological constant to zero (since it breaks the Weyl symmetry). The possibility to
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introduce a counter-term violating a classical symmetry arises because the symmetry itself is
broken by a quantum anomaly, so there is no reason to enforce it in the classical action.

We now review each issue separately. First, consider the inner-product of a single tensor
(3.32): the determinant det -y, depends on the metric and one should be more careful when
fixing the gauge or integrating over all metrics. However, ultralocality implies that the
determinant can only be of the form [68, pp. 923]

/dety, = e Suldl, (3.131)

for some p., € R, since S, is the only renormalizable covariant functional depending on the
metric but not on its derivatives. The effect is just to redefine the cosmological constant.

Second, the volume of the field space can be defined as the limit A — 0 of a Gaussian
integral [68, pp. 931]:

Qg = lim / d,®e*(®®)s, (3.132)

Due to ultralocality, the Gaussian integral should again be of the form
/ dy® e (B = 1) Suld], (3.133)
for some constant p(\). Hence, the limit A — 0 gives
Qs = / d,® = e (O Suld], (3.134)

which can be absorbed in the cosmological constant. However, the situation is more com-
plicated if ® = &, ¢ since the integration variables also appear in the measure, as it was
also discussed before (3.61). But, in that case, it cannot appear in the expression of the
volume in the LHS. Moreover, invariances under diffeomorphisms for both measures, and
under Weyl rescalings for the vector measure, imply that the LHS can only depend on the
moduli through the background metric §. The diffeomorphism and Weyl volumes can be
written in terms of e~# 5«19l since there is no counter-term left (the cosmological constant
counter-term is already fixed to cancel the coefficient of S, [g]), it is necessary to divide by
Qgauge to cancel the volumes.

Finally, the computation of the Weyl anomaly (3.118) yields divergent terms of the form

.1 2
lim ~ [ d*y/g. (3.135)

These divergences are canceled by the cosmological constant counter-term, see [69, app. 5.A]
for more details.

3.3.5 Gauge-fixed path integral

As a conclusion of this section, we found that the partition function (3.28) can be written as

Zg:/ dMgt det(¢17ﬂ])§ Qckv[g]_l
M, /det(i, 65); /det(hi, ¥;)g

det(¢i, 1;)7 det' PP Z,,[4]
= dMg 9 1 m ) ‘ b
/Mg t\/det(¢i,¢j)g det(vi, ¥;) Qv [d] (3.136b)

after gauge fixing of the worldsheet diffeomorphisms and Weyl rescalings. It is implicit that
the factors for the CKV and moduli are respectively absent for g > 1 and g < 1. For g =0
the CKV group is non-compact and its volume is infinite. It looks like the partition vanishes,
but there are subtleties which will be discussed in Section 4.1.3.

Arp (9] Zm|g], (3.136a)
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Remark 3.14 (Weil-Petersson metric) When the metric is chosen to be of constant
curvature R = —1, the moduli measure together with the determinants form the Weil-
Petersson measure

det(¢i7ﬁj )g

. (3.137)
det(¢i, ¢5)3

d(WP) = [ dMst
M

In (3.136), the background metric . is fixed. However, the derivation holds for any
choice of §,p: as a consequence, it makes sense to relax the gauge fixing and allow it to vary
while adding gauge symmetries. The first symmetry is background diffeomorphisms:

=", J0)=00),  H0)=F0), V()=o) (3138)

This symmetry is automatic for Sy, [§, U] since Sy, [g, ¥] was invariant under (3.5). Similarly,
the integration measures are also invariant. A second symmetry is found by inspecting the
decomposition (3.56)

gab = *(€*%9a(2)), (3.139)
which is left invariant under a background Weyl symmetry (also called emergent):
Gn(@) = Dgu(0),  #(0) = $lo) ~w(o), V(o) =U(o). (3.140)

Let us stress that it is not related to the Weyl rescaling (3.10) of the metric gq,. The
background Weyl rescaling (3.140) is a symmetry even when the physical Weyl rescaling
(3.10) is not. Together, the background diffeomorphisms and Weyl symmetry have three
gauge parameters, which is sufficient to completely fix the background metric § up to moduli.

In fact, the combination of both symmetries is equivalent to invariance under the physical
diffeomorphisms. To prove this statement, consider two metrics g and g’ related by a
diffeomorphism F' and both gauge fixed to pairs (f, ¢, §) and (f',¢',§):

g;b = F*gaba g;b = f/* (e2¢ g:zb)v Gab = f* (ez¢§ab)- (3141)
Then, the gauge fixing parametrizations are related by background symmetries (ﬁ’, w) as
F=f"Fof, ¢=F(@p-w), 34=F€Gu) (3.142)

Moreover, this also implies that there is a diffeomorphism f = F o f such that ¢’ is gauge
fixed in terms of (¢, §):

o = (¢ Gas).- (3.143)

Computation — Equation (3.142)
The functions F, f, f’, ¢, ¢’ and the metrics gqs, g.;, Gap and g, are all fixed and one

must find £ and w such that the relations (3.141) are compatible. First, one rewrites
g., in terms of o, and compare with the expression with g/ ,:

9;17 — F*gab - F* (f* (e2¢gab)) - F* (f* (32(¢_w)e2wgab))
= (ew%b)-

In the third equality, we have introduced w because g/, = F Jap is not true in general
since there are 3 independent components but F has only 2 parameters, so we cannot
just define f' = F o f and ¢/ = ¢. This explains the importance of the emergent Weyl
Symimetry.
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Remark 3.15 (Gauge fixing and field redefinition) Although it looks like we are un-
doing the gauge fixing, this is not exactly the case since the original metric is not used
anymore. One can understand the procedure of this section as a field redefinition: the degrees
of freedom in gqp are repackaged into two fields (¢, §up) adapted to make some properties of the
system more salient. A new gauge symmetry is introduced to maintain the number of degrees
of freedom. The latter helps to understand the structure of the action on the background.
Finally, in this context, the Liouville action is understood as a Wess—Zumino action, which
is defined as the difference between the effective actions evaluated in each metric. Another
typical use of this point of view is to rewrite a massive vector field as a massless gauge field
together with an azion [239].

Remark 3.16 (Two-dimensional gravity) In 2d gravity, one does not work in the critical
dimension (3.125) and cr, # 0. Thus, the Liouville mode does not decouple: the conformal
anomaly breaks the Weyl symmetry at the quantum level which gives dynamics to gravity,
even if it has no degree of freedom classically. As a consequence, one chooses Qgange = Qi

Since the role of the classical Weyl symmetry is not as important as for string theory, it is
even not necessary to impose it classically. This leads to consider non-conformal matter [29,
30, 42, 101, 102]. Following the arguments from Section 3.1, the existence of the emergent
Weyl symmetry (3.140) implies that the total action Sgray[G, @] + Sm[§, ¥] must be a CFT for
a flat background § = &, even if the two actions are not independently CFTs.

3.4 Ghost action

3.4.1 Actions and equations of motion

It is well-known that a determinant can be represented with two anticommuting fields,
called ghosts. The fields carry indices dictated by the map induced by the operator of the
Faddeev—Popov determinant: one needs a symmetric and traceless anti-ghost b, and a vector
ghost c¢* fields:

Applg] = / d)bd]c e Senlobel, (3.144)
where the prime indicates that the ghost zero-modes are omitted. The ghost action is
1
Sanlovbcl = 5 [ Povagg bucPioa (3.1450)
1
=i / d?0\/9 9% (bac Voc® + bpeVac® — by Vec®). (3.145b)

The ghosts ¢® and anti-ghosts b,; are associated respectively to the variations due to the
diffeomorphisms £ and to the variations perpendicular to the gauge slice. The normalization
of 1/4m is conventional. In Minkowski signature, the action is multiplied by a factor i.

Since b,y is traceless, the last term of the action vanishes and could be removed. However,
this implies to consider traceless variations of the b,;, when varying the action (to compute
the equations of motion, the energy—-momentum tensor, etc.). On the other hand, one can
keep the term and consider unconstrained variation of by (since the structure of the action
will force the variation to have the correct symmetry), which is simpler. A last possibility is
to introduce a Lagrange multiplier. These aspects are related to the question of introducing
a ghost for the Weyl symmetry, which is described in Section 3.4.2.

The equations of motion are

(Pr6)ab = Vach + Vo — gapVec =0,  (P]b), = =2V, = 0. (3.146)
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Hence, the classical solutions of b and c¢ are respectively mapped to the zero-modes of the
operators PlJf and P;, and they are thus associated to the CKV and Teichmiiller parameters.
The energy—momentum tensor is

TE} = —bac Ve — bpeVac® + Vebap + gapbeaVec?. (3.147)
Its trace vanishes off-shell (i.e. without using the b and ¢ equations of motion)
g°TE =0, (3.148)
which shows that the action (3.145) is invariant under Weyl transformations
Sgn[e*“g,b,c] = Sgnlg, b, |- (3.149)

The action (3.145) also has a U(1) global symmetry. The associated conserved charge is
called the ghost number and counts the number of ¢ ghosts minus the number of b ghosts, i.e.

Ngn(b) = —1, Ngn(c) = 1. (3.150a)
The matter fields are inert under this symmetry:
Ngn(¥) =0. (3.150b)

In terms of actions, the path integral (3.136) can be rewritten as

det iy (i) o Qacv|d -1 A A
Zg =/ dMgt € (¢ /’l’])g k [g] /dg‘I’ dlgbdlgce—Sm[g,\Il]—Sgh[g,b,c]. (3151)
My \/det(¢la ¢J)§ \/det (qpl; %)g

One can use (3.136) or (3.151) indifferently: the first is more appropriate when using spectral
analysis to compute the determinant explicitly, while the second is more natural in the
context of CFTs.

3.4.2 Weyl ghost

Ghosts have been introduced for the reparametrizations (generated by £%) and the traceless
part of the metric (the gauge field associated to the transformation): one may wonder why
there is not a ghost ¢,, associated to the Weyl symmetry along with an antighost for the trace
of the metric (i.e. the conformal factor). This can be understood from several viewpoints.
First, the relation between a metric and its transformation — and the corresponding gauge
fixing condition — does not involve any derivative: as such, the Jacobian is trivial. Second,
one could choose

Fuy = V/99ab — V/0gab = 0 (3.152)

as a gauge fixing condition instead of (3.63), and the trace component does not appear
anywhere. Finally, a local Weyl symmetry is not independent from the diffeomorphisms.

Remark 3.17 (Local Weyl symmetry) The topic of obtaining a local Weyl symmetry by
gauging a global Weyl symmetry (dilatation) is very interesting [105, chap. 15, 139]. Under
general conditions, one can express the new action in terms of the Ricci tensor (or of the
curvature): this means that the Weyl gauge field and its curvature are composite fields.

Moreover, one finds that local Weyl invariance leads to an off-shell condition while
diffeomorphisms give on-shell conditions. This explains why one imposes only Virasoro
constraints (associated to reparametrizations) and no constraints for the Weyl symmetry in
the covariant quantization.
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However, it can be useful to introduce a ghost field ¢,, for the Weyl symmetry nonetheless.
In view of the previous discussion, this field should appear as a Lagrange multiplier which
ensures that b is traceless. Starting from the action (3.145), one finds

1
Sgh [9,b,¢,c0] = in /dQU\/E gab (bacvbcc + bpcVact + 2bawa), (3.153)
where b, is not traceless anymore. The ghost ¢, is not dynamical since the action does not

contain derivatives of it, and it can be integrated out of the path integral to recover (3.145).
The equations of motion for this modified action are

Vach 4+ Vica + 20apCy =0, Vo =0,  g*®bgp = 0. (3.154)

Contracting the first equation with the metric gives
1 a
Cw =5 Vac?, (3.155)

and thus ¢, is nothing else than the divergence of the ¢® field: the Weyl ghost is a composite
field (this makes connection with Remark 3.17) — see also (3.65c). The energy—momentum
tensor of the ghosts with action (3.153) is

T;gbh = - (bacvbcC + bbcvacc + 2babcw) - vc(babcc)
1 . (3.156)
+5 9abg°® (bee Vac® + baeVec® + 2begcy)-

The trace of this tensor
9T = — g%V (bapc®) (3.157)

does not vanish off-shell, but it does on-shell since g*®b,;, = 0. This implies that the theory
is Weyl invariant even if the action is not. It is interesting to contrast this with the trace
(3.148) when the Weyl ghost has been integrated out.

The equations of motion (3.146) and energy—momentum tensor (3.147) for the action
(3.145) can be easily derived by replacing c,, by its solution in the previous formulas.

Computation — Equation (3.156)
The first parenthesis comes from varying g®®, the second from the covariant derivatives,
the last from the ,/g. The second term comes from

9% (baeBVcE + bpedVac®) = 29%b,e0Vc® = 2g%bcdT%, 4
= g9 (Vs0gde + Vadgee — Vebgna)c®
= b"(Vadgse + Vedgab — Vi0gac)c
= bV 8ganc’,

where two terms have cancelled due to the symmetry of b®. Integrating by part gives
the term in the previous equation.

Note that the integration on the Weyl ghost yields a delta function

/ dgey e (09" b — 5(gPbyy). (3.158)
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3.4.3 Zero-modes

The path integral (3.151) excludes the zero-modes of the ghosts. One can expect them to be
related to the determinants of elements of ker P; and ker PlT with Grassmann coefficients.
They can be included after few simple manipulations (see also Appendix C.1.3).

It is simpler to first focus on the b ghost (to avoid the problems related to the CKV).
The path integral (3.151) can be rewritten as

A1—1 M,
Z, = /M Mo S l9] dg¥dgbdje [ (b, ) e 5m1o¥=Sanlobel - (3.159)
9 i=1

V det(w’h ’l/)j)g

In this expression, ¢ zero-modes are not integrated over, only the b zero-modes are. This is
the standard starting point on Riemann surfaces with genus g > 1. The inner-product reads
explicitly

(b, f13)g = /d20\/§ G b i ca = /d20\/§gacgbdbabﬂi,cd- (3.160)

Computation — Equation (3.159)
Since the zero-modes of b are in the kernel of P}, it means that the quadratic differentials
(3.76) also provide a suitable basis:

b=1by+V, bo = boiths,

where the by; are Grassmann-odd coefficients. The first step is to find the Jacobian for
the changes of variables b — (b', b;):

1= /dgbe—"’lﬁ = J/dgb’HdbOi e W lsmlboidil” = . [det(g, 6).

Next, (3.151) has no zero-modes, so one must insert M, of them at arbitrary positions
O'? to get a non-vanishing result when integrating over dMsbg;. The result of the integral

is:
/dMgb0¢ Hbo(O’?) = /dMgbOi H [b01¢z(0?)] = det ¢1(0'§))
J J
The only combination of the ¢; which does not vanish is the determinant due to the
anti-symmetry of the Grassmann numbers. Combining both results leads to:

Mg

= = o b(o; 3.161
det(¢i, ¢;)5 det¢i(g?)g (05)- (3.161)

The locations positions o are arbitrary (in particular, the RHS does not depend on them

since the LHS does not either). Note that more details are provided in Appendix C.1.3.
An even simpler result can be obtained by combining the previous formula with the
factor det(¢;, f1;)4:

Ly 4et(@i, )

d P rJIY
! V det(¢i7¢j)§

MQ
= dgb [] (5 2y)s- (3.162)
j=1
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This follows from

Mg M,
H b(o?) = H boigi(09)] = det ¢i(09) [ bo:s
j=1 j=1 J=1

M, M, M, M,
det(i, f15)g [ ] boi = H [b0i (#4, 25)5] H boidis 3)s = [ [ (b fis)s-
j=1 j=1 j=1 J=1

Note that the previous manipulations are slightly formal: the symmetric traceless fields
bay and ¢; qp carry indices and there should be a product over the (two) independent
components. This is a trivial extension and would just make the notations heavier.

Similar manipulations lead to a new expression which includes also the ¢ zero-mode (but
which is not very illuminating):

c

Qckv[g]_l\/ ab
Zg= [ dMot == [ d;¥dybd, || ®(0%)cb (o
=), . detdi(o)) o o)

(3.163)

x T (s, )y €Sl 1= Senlobie],

The a?“ are Kg = Ky /2 fixed positions and the integral does not depend on their values.
Note that only K§ positions are needed because the coordinate is 2-dimensional: fixing 3
points with 2 components correctly gives 6 constraints. Then, 1;(0%%) is a 6-dimensional
matrix, with the rows indexed by ¢ and the columns by the pair (a, 7).

The expression cannot be simplified further because the CKV factor is infinite for g = 0.
This is connected to a fact mentioned previously: there is a remaining gauge symmetry which
is not taken into account

¢ — c+co, Picy = 0. (3.164)

A proper account requires to gauge fix this symmetry: the simplest possibility is to insert
three or more vertex operators — this topic is discussed in Section 4.1.
Finally, note that the same question arises for the b-ghost since one has the symmetry

b—sb+by, Plby=0. (3.165)

That there is no problem in this case is related to the presence of the moduli.

3.5 Normalization

In the previous sections, the closed string coupling constant g; did not appear in the
expressions. Loops in vacuum amplitudes are generated by splitting of closed strings. By
inspecting the amplitudes, it seems that there are 2g such splittings (Figure 3.2), which
would lead to a factor gfg . However, this is not quite correct: this result holds for a 2-point
function. Gluing the two external legs to get a partition function (that is, taking the trace)
leads to an additional factor g;2? (to be determined later), such that the overall factor is
gsg 2. The fact that it is the appropriate power of the coupling constant can be more easily
understood by considering n-point amplitudes (Section 4.1). The normalization of the path
integral can be completely fixed by unitarity [237].
The above factor has a nice geometrical interpretation. Defining

@y =1Ing; (3.166)
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and remembering the expression (3.4) of the Euler characteristics x4 = 2 — 2g, the coupling
factor can be rewritten as

®
59_2 = e—q’OXg = exp (—4—7?_ /dza'\/gR) = e_QOSEH[g]; (3167)

where Sgy is the Einstein—Hilbert action. This action is topological in two dimensions. Hence,
the coupling constant can be inserted in the path integral simply by shifting the action by the
above term. This shows that string theory on a flat target spacetime is completely equivalent
to matter minimally coupled to Einstein—Hilbert gravity with a cosmological constant (tuned
to impose Weyl invariance at the quantum level). The advantage of describing the coupling
power in this fashion is that it directly generalizes to scattering amplitudes and to open
strings. The parameter @ is interpreted as the expectation value of the dilaton. Replacing
it by a general field ®(X*) is a generalization of the matter non-linear sigma model, but this
topic is beyond the scope of this review.

Figure 3.2: g-loop partition function.

3.6 Summary

In this chapter, we started with a fairly general matter CF'T — containing at least D scalar
fields X* — and explained under which condition it describes a string theory. The most
important consequence is that the matter 2d QFT must in fact be a 2d CFT. We then
continued by describing how to gauge fix the integration over the surfaces and we identified
the remaining degrees of freedom — the moduli space My — up to some residual redundancy —
the conformal Killing vector (CKV). Then, we showed how to rewrite the result in terms
of ghosts and proved that they are also a CFT. This means that a string theory can be
completely described by two decoupled CFTs: a universal ghost CFT and a theory-dependent
matter CFT describing the string spacetime embedding and the internal structure. The
advantage is that one can forget the path integral formalism altogether and employ only
CFT techniques to perform the computations. This point of view will be developed for
off-shell amplitudes (Chapter 7) in order to provide an alternative description of how to build
amplitudes. It is particularly fruitful because one can also consider matter CFTs which do
not have a Lagrangian description. In the next chapter, we describe scattering amplitudes.

3.7 References

e The definition of a field measure from a Gaussian integral and manipulations thereof
can be found in [125, sec. 15.1, 22.1, 210, chap. 14, 234, 68].

o The most complete explanations of the gauge fixing procedure are [125, sec. 15.1, 22.1,
34, sec. 3.4, 6.2, 237, chap. 5, 63, 151, chap. 5]. The original derivation can be found
in [67, 198].
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o For the geometry of the moduli space, see [210, 212].
o Ultralocality and its consequences are described in [68, 234] (see also [123, sec. 2.4]).

o The use of a Weyl ghost is shown in [293, sec. 8, 314, sec. 9.2].
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Chapter 4

Worldsheet path integral:
scattering amplitudes

In this chapter, we generalize the worldsheet path integral to compute scattering amplitudes,
which corresponds to insert vertex operators. The gauge fixing from the previous chapter is
generalized to this case. In particular, we discuss the 2-point amplitude on the sphere. Finally,
we introduce the BRST symmetry and motivate some properties of the BRST quantization,
which will be performed in details later. The formulas in this chapter are all covariant: they
will be rewritten in complex coordinates in the next chapter.

4.1 Scattering amplitudes on moduli space

In this section, we describe the scattering of n strings. The momentum representation is
more natural for describing interactions, especially in string theory. Therefore, each string is
characterized by a state Vg, (k;) with momentum k; and some additional quantum numbers
a; (i=1,...,n). We start from the worldsheet path integral (3.28) before gauge fixing:

dgga
Zy= [ G0zl Zls) = [dgweSno (41)

gauge [g] "

4.1.1 Vertex operators and path integral

The external states are represented by infinite semi-tubes attached to the surfaces. Under a
conformal mapping, the tubes can be mapped to points called punctures on the worldsheet.
At g loops, the resulting space is a Riemann surface X, ,, of genus g with n punctures (or
marked points). The external states are represented by integrated vertex operators

Vo(ks) == [ d%0+/9(0) Vu(k; o). (4.2)

The vertex operators V,(k; o) are built from the matter CFT operators and from the
worldsheet metric g,5. The functional dependence is omitted to not overload the notation,
but one should read V,(k; o) := Vu[g, ¥](k; o). The integration over the state positions is
necessary because the mapping of the tube to a point is arbitrary. Another viewpoint is
that it is needed to obtain an expression invariant under worldsheet diffeomorphisms. The
vertex operators described general states which not necessarily on-shell: this restriction will
be found later when discussing the BRST invariance of scattering amplitudes (Section 4.2.2).
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Following Section 3.3.5, the Einstein—Hilbert action with boundary term

Senlg] = / d20fR+ — ]{ dsk = xgn- (4.3)

is inserted in the path integral equals the Euler characteristics x4, (the g in x4, denotes
the genus). On a surface with punctures, the latter is shifted by the number of punctures
(which are equivalent to boundaries or disks) with respect to (3.4):

Xgn = X(Zgn) =2—29 —n. (4.4)
This gives the normalization factor:
g, Xom = e~ ®oSmulg] ® :=Ing;. (4.5)

The correctness factor can be verified by inspection of the Riemann surface for the scattering
of n string at g loops. In particular, the string coupling constant is by definition the
interaction strength for the scattering of 3 strings at tree-level. Moreover, the tree-level
2-point amplitude contains no interaction and should have no power of gs. This factor can
also be obtained by unitarity [237].

By inserting these factors in (3.28), the g-loop n-point scattering amplitude is described
by:

dggab _
Ay (ks N o= g e Sm l9:¥]—- %SEH[Q]II 267/ 9(03) V. (ki; 03) ) .
oD = [ 5200 L\J Svetedtadie)
(4.6)

The o; dependence of each /g will be omitted from now on since no confusion is possible.
The following equivalent notations will be used:

Ag,”({ki}){ai} = Ag,n(kl’ tey kn)al,...,an = Ag," (VOé1 (kl)a ceey Van (kn)) . (47)

The complete (perturbative) amplitude is found by summing over all genus:

o0

An(klv v 7 011, HQn Z g,n(kl, ] )011,~-~7Oln' (4'8)

g=0

We omit a genus-dependent normalization which can be determined from unitarity [237].
Sometimes, it is convenient to extract the factor e"*oXs.» of the amplitude A, ,, to display
explicitly the genus expansion, but we will not follow this convention here. Since each term of
the sum scales as Ag 5, g§g+" 2 , this expression clearly shows that worldsheet amplitudes
are perturbative by definition: this motivates the construction of a string field theory from
which the full non-perturbative S-matrix can theoretically be computed.

Finally, the amplitude (4.6) can be rewritten in terms of correlation functions of the

matter QFT integrated over worldsheet metrics:

Ay () s :/nggab _<1>osEH[g]/Hd a¢‘<HVa (ki3 ;) > (4.9)

gauge [9]

The correlation function plays the same role as the partition function in (3.28). This shows
that string expressions are integrals of CF'T expressions over the space of worldsheet metrics
(to be reduced to the moduli space).

We address a last question before performing the gauge fixing: what does (4.6) computes
exactly: on-shell or off-shell? Green functions or amplitudes? if amplitudes, the S-matrix
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or just the interacting part T' (amputated Green functions)? The first point is that a path
integral over connected worldsheets will compute connected processes. We will prove later,
when discussing the BRST quantization, that string states must be on-shell (Sections 4.2
and 4.2.2) and that it corresponds to setting the Hamiltonian (3.26) to zero:

H=0. (4.10)

From this fact, it follows that (3.28) must compute amplitudes since non-amputated Green
functions diverge on-shell (due to external propagators). Finally, the question of whether it
computes the S-matrix S = 1+ iT, or just the interacting part T is subtler. At tree-level,
they agree for n > 3, while T' = 0 for n = 2 and S reduces to the identity. This difficulty
(discussed further in Section 4.1.2) is thus related to the question of gauge-fixing tree-level
2-point amplitude (Section 4.1.3). It has long been believed that (3.28) computes only the
interacting part (amputated Green functions), but it has been understood recently that this
is not correct and that (3.28) computes the S-matrix.

Remark 4.1 (Scattering amplitudes in QFT) Remember that the S-matriz is sepa-
rated as:
S =1+iT, (4.11)

where 1 denotes the contribution where all particles propagate without interaction. The
connected components of S and T are denoted by S and T¢. The n-point (connected)
scattering amplitudes A, for n > 3 can be computed from the Green functions Gy, through
the LSZ prescription (amputation of the external propagators):

n

Ap(ky, ... kn) = Gk, ... k) [J (67 + m?). (4.12)

=1

The path integral computes the Green functions G, ; perturbatively, they are obtained from
the Feynman rules. They include a D-dimensional delta function

Gk, .. kn) o< 6P (ky + -+ + k). (4.13)

The 2-point amputated Green function Ty computed from the LSZ prescription vanishes
on-shell. For example, considering a scalar field at tree-level, one finds:

Ty = Ga(k, k') (k* + m?)? ~ (k* + m?) 6P) (k + k') ———0 (4.14)
25—m?2
since (D)( )
sk +k
"y —
Galk, ) = =7 (4.15)

Hence, To = 0 and the S-matriz (4.11) reduces to the identity component SS = 15 (which is
a connected process). There are several way to understand this result:

1. The recursive definition of the connected S-matrix S¢ from the cluster decomposition
principle requires a non-vanishing 2-point amplitude [148, sec. 5.1.5, 306, sec. 4.8, 80,
sec. 6.1].

2. The 2-point amplitude corresponds to the normalization of the 1-particle states (overlap
of a particle state with itself, which is non-trivial) [305, eq. 4.1.4, 291, chap. 5].

3. A single particle in the far past propagating to the far future without interacting is a
connected and physical process [80, p. 133].

4. It is required by the unitarity of the 2-point amplitude [83].
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These points indicate that the 2-point amplitude is proportional to the identity in the momen-
tum representation [148, p. 212, 305, eq. 4.8.8 and 4.1.5]

Ag(k, k') = 2k° (2m)P~16(P—D(k — /). (4.16)

The absence of interactions implies that the spatial momentum does not change (the on-shell
condition implies that the energy is also conserved). This relation is consistent with the
commutation relation of the operators with the Lorentz invariant measure'

[a(k),at (k)] = 2k° (2m)P~16P— D (k — k). (4.17)

That this holds for all particles at all loops can be proven using the Killen—-Lehman represen-
tation [148, p. 212].

On the other hand, the identity part in (4.11) is absent for n > 3 for connected amplitudes:
S¢ =T¢ forn > 3. This shows that the Feynman rules and the LSZ prescription compute
only the interacting part T of the on-shell scattering amplitudes. The reason is that the
derivation of the LSZ formula assumes that the incoming and outgoing states have no overlap,
which is not the case for the 2-point function. A complete derivation of the S-matriz from
the path integral is more involved [1/8, sec. 5.1.5, 315, sec. 6.7, 99] (see also [51]). The
main idea is to consider a superposition of momentum states (here, in the holomorphic
representation [315, sec. 5.1, 6.4])

() = / APk a (k) at (k). (4.18)

They contribute a quadratic piece to the connected S-matrix and, setting them to delta
functions, one recovers the above result.

4.1.2 Gauge fixing: general case

The Faddeev—Popov gauge fixing of the worldsheet diffeomorphisms and Weyl rescaling (3.15)
goes through also in this case if the integrated vertex operators are diffeomorphism and Weyl
invariant:

8¢V, (ki) = ¢ / d%0/g Va, (ki;0) =0, (4.19a)
0w Vi (k;) = b4 /dza\/EVai (ki;0) =0, (4.19b)

with the variations defined in (3.7) and (3.11). Diffeomorphism invariance is straightforward
if the states are integrated worldsheet scalars. However, if the states are classically Weyl
invariant, they are not necessary so at the quantum level: vertex operators are composite
operators, which need to be renormalized to be well-defined at the quantum level. Renormal-
ization introduces a scale which breaks Weyl invariance. Enforcing it to be a symmetry of
the vertex operators leads to constraints on the latter. We will not enter in the details since
it depends on the matter CFT and we will assume that the operators V,, (k;) are indeed
Weyl invariant (see [237, sec. 3.6] for more details). In the rest of this book, we will use CFT
techniques developed in Chapter 20. The Einstein—Hilbert action is clearly invariant under
both symmetries since it is a topological quantity.

'If the modes are defined as (k) = a(k)/v/2k0 such that [a(k), &t (k')] = (2m)P~16(P—1) (k — k'), then
one finds Aa(k, k') = (2r)P—16(0=1) (k — k'),
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Following the computations from Section 3.3 leads to a generalization of (3.136) with the
vertex operators inserted for the amplitude (4.6):

o det(qﬁi,ﬂ-)* Qckv[g]_1
A n kz a;} = SXQY dMg —
an({ki})a} = 9 /Mg t V/det(i, ¢5)g \/det(Wi, 1)

" n (4.20)
X /1:[1d20, <H (ks 04) >

= mh@

The hat on the vertex operators indicates that they are evaluated in the background metric

g.
The next step is to introduce the ghosts: following Section 3.4, the generalization of

(3.159) is

M,

- QckV[g]_l ~ —Sgnl[d,b
Agn({ki}) (e = 95 Xw/ dMop <2 [ dybdse [](b, i)y e Senlobel
’ ot M, det(¥i, )5 7 El ’

y / HdZUi\/§<HVai(ki;ai)>.

m?@

(4.21)

For the moment, only the b ghosts come with zero-modes. Then, ¢ zero-modes can be
introduced in (4.21)

A n = S_Xg,n dMgt CkV[g] /d bd €ab CL i —®Pgh Q,b C]
an =0 /Mg det 64(07) H H(u,

x/ H d20i\/§<HVai(ki§‘7i)>7

m?ij

(4.22)
by following the same derivation as (3.163). The formulas (4.21) and (4.22) are the correct
starting point for all g and n. In particular, the ¢ ghosts are not paired with any vertex
(a condition often assumed or presented as mandatory). This fact will help resolve some
difficulties for the 2-point function on the sphere.

Remember that there is no CKV and no ¢ zero-mode for g > 2. For the sphere g = 0
and the torus g = 1, there are CKVs, indicating that there is a residual symmetry in (4.21)
and (4.22), which is the global conformal group of the worldsheet. It can be gauge fixed by
imposing conditions on the vertex operators.” The simplest gauge fixing condition amounts
to fix the positions of Kg vertex operators through the Faddeev—Popov trick:

Ky
1=a6) [a [[ 0¥ -}, o =odracl  sop=th), ()

where ¢ is a conformal Killing vector, and the variation of o was given in (3.7). We find that
A(O’?) = det ¢i(¢7?)~ (4.24)
0

A priori, the positions o; are not the same as the one appearing in (3.163) (since both sets
are arbitrary): however, considering the same positions allows to cancel the factor (4.24)
with the same one in (3.163).

2In fact, it is only important to gauge fix for the sphere because the volume of the group is infinite. On
the other hand, the volume of the CKV group for the torus is finite-dimensional such that dividing by Q¢+
is not ambiguous.
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Computation — Equation (4.24)

The first step is to compute A in (4.23). For this, we decompose the CKV ¢ on the
basis (3.104)

£(09) = asps(09)

and write the Gaussian integral:

Ko 3 Kg 3
1= / H d250‘j o 22;(893:805) _ A/H daje” I ACACIECA)
j=1 j=1

-1

= A(det yi(0y))

Again, we have reduced rigour in order to simplify the manipulations.

After inserting the identity (4.23) into (4.22), one can integrate over K vertex operator
positions to remove the delta functions — at the condition that there are at least K¢ operators.
As a consequence, we learn that the proposed gauge fixing works only for n > 1if g =1 or
n > 3 if g = 0. This condition is equivalent to

Xgn =2—29—n<0. (4.25)
In this case, the factors det ¢;(o ) cancel and (4.21) becomes

Mg

Agn({ki){ai} = 95 / dMs¢ /d sbdsc H €ab a (09 (o )H('ai,b)ge_sgh[g,b,c]

i=1

/Hdal <HV%( T ] H Vai(ki;ai)>.

i=Kg+1

The result may be divided by a symmetry factor if the delta functions have solutions for
several points [237, sec. 5.3]. Performing the gauge fixing for the other cases (in particular,
g=0,n=2and g =1,n =0) is more subtle (Section 4.1.3 and [237]).

The amplitude can be rewritten in two different ways. First, the ghost insertions can be
rewritten in terms of a ghost correlation functions

c

KS
Ag,nqki}){az}—g?‘”/ dMg’f/ 1 &ovs < 3 o (@D O)Huz,b)9>
j=1

= K°+1 gh.,g
g A
x<HVaj 7300 HVal(kl,al >
j=1 i= K°+1 m.g
(4.27)

This form is particularly interesting because it shows that, before integration over the moduli,
the amplitudes factorize. This is one of the main advantage of the conformal gauge, since
the original complicated amplitude (4.6) for a QFT on a dynamical spacetime reduces to
the product of two correlation functions of QFTs on a fixed curved background. In fact,
the situation is even simpler when taking a flat background § = ¢ since both the ghost
and matter sectors are CFTs and one can employ all the tools from two-dimensional CFT
(Part VII) to perform the computations and mostly forget about the path integral origin of
these formulas. This approach is particularly fruitful for off-shell (Chapter 7) and superstring
amplitudes (Part IV).
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Remark 4.2 (Amplitudes in 2d gravity) The derivation of amplitudes for 2d gravity
follows the same procedure, up to two differences: 1) there is an additional decoupled (before
moduli and position integrations) gravitational sector described by the Liouville field, 2) the
matter and gravitational action are not CFTs if the original matter was not.

A second formula can be obtained by bringing the c-ghost on top of the matter vertex
operators which are at the same positions

Mg Ky
Agn({k:}) 1an) _g—xgn/ dMgt/ H d?o; g<HBiH77aj(k Hval ki; 0:) >
=KS+1 i=1  j=1 =KE+1 s
(4.28)
and where c ) )
Pay (k3 09) = =3¢ (09)e"(0]) Ve (kj09),  Bi= (fu, b)s. (4.20)
The operators ¥4, (ki; o; 9) (a priori off-shell) are called unintegrated operators, by opposition
to the integrated operators Va,; (k;). We will see that both are natural elements of the BRST
cohomology.
To stress that the B; insertions are really an element of the measure, it is finally possible
to rewrite the previous expression as

My Kq

Ag,n({ki}){ai} = gs_xgm / ke </\ Ei dt; H 77(1,- i ] HVa klyal d Uz\/_> .

MgxC™ 79\ j=1 i=KE+1 g
(4.30)
The result (4.28) suggests a last possibility for improving the expression of the amplitude.
Indeed, the different vertex operators don’t appear symmetrically: some are integrated over
and other come with ¢ ghosts. Similarly, the two types of integrals have different roles: the
moduli are related to geometry while the positions look like external data (vertex operators).
However, punctures can obviously be interpreted as part of the geometry, and one may
wonder if it is possible to unify the moduli and positions integrals. It is, in fact, possible to
put all vertex operators and integrals on the same footing by considering the amplitude to
be defined on the moduli space M, ,, of genus-g Riemann surfaces with n punctures instead

of just M, [237] (see also Section 7.3.1).

4.1.3 Gauge fixing: 2-point amplitude

As discussed at the end of Section 4.1.1, it has long been believed that the tree-level 2-point
amplitude vanishes. There were two main arguments: there are not sufficiently many vertex
operators 1) to fix completely the SL(2, C) invariance or 2) to saturate the number of c-ghost
zero-modes. Let’s review both points and then explain why they are incorrect. We will
provide the simplest arguments, referring the reader to the literature [83, 254] for more
general approaches.

For simplicity, we consider the flat metric § = § and an orthonormal basis of CKV. The
two weight-(1, 1) matter vertex operators are denoted as Vi(z, z) and Vi (2/, Z’) such that the
2-point correlation function on the sphere reads (see Chapters 20 and 22 for more details):

i(2m)P (D) ’
(Vi(2,2)Vir (2, %)) g2 = (@ )|26— z’(|k ), (4.31)

The numerator comes from the zero-modes e(* %)z for g target spacetime with a Lorentzian
signature [63, p. 866, 237] (required to make use of the on-shell condition).
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Review of the problem

The tree-level amplitude (4.20) for n = 2 reads:

C
Aoa(k, k') = \T/Scoo / A22d22" (Vi(2, 2)Vir (2, 2)) g2 » (4.32)

where Ko r, is the CKV group of ¥y ,, the sphere with n punctures. In particular, the group
of the sphere without puncture is Koo = PSL(2,C). The normalization of the amplitude
is Cg, = 8ma/~! for g, = 1 [237, 304]. Since there are two insertions, the symmetry can be
partially gauge fixed by fixing the positions of the two punctures to 2 =0 and 2’ = co. In
this case, the amplitude (4.32) becomes:

Cs2
Aoz (ks K') = gore— (Vi(00,00)Vie (0,0)) 52, (4:33)

where Ko 2 = R% x U(1) is the CKV group of the 2-punctured sphere — containing dilatations
and rotations.® Since the volume of this group is infinite Vol Ko 2 = oo, it looks like Ag 2> = 0.
However, this forgets that the 2-point correlation function (4.31) contains a D-dimensional
delta function. The on-shell condition implies that the conservation of the momentum
k + k' = 0 is automatic for one component, such that the numerator in (4.33) contains a
divergent factor §(0):

Cs, 2mi 5(0)

Ao a(k, k') = (2m)P~16PV(k + K) Vol K
0,2

(4.34)

Hence, (4.33) is of the form Ag 2 = co/oo and one should be careful when evaluating it.

The second argument relies on a loophole in the understanding of the gauge fixed
amplitude (4.28). The result (4.28) is often summarized by saying that one can go from
(4.20) to (4.28) by replacing K¢ integrated vertices [ V' by unintegrated vertices ¢V in order
to saturate the ghost zero-modes and to obtain a non-zero result. For g = 0, this requires 3
unintegrated vertices. But, since there are only two operators in (4.32), this is impossible
and the result must be zero. However, this is also incorrect because it is always possible
to insert 6 ¢ zero-modes, as show the formulas (3.163) and (4.27). Indeed, they are part
of how the path integral measure is defined and do not care of the matter operators. The
question is whether they can be attached to vertex operators (for aesthetic reasons or more
pragmatically to get natural states of the BRST cohomology). To find the correct result
with ghosts requires to start with (4.27) and to see how this can be simplified when there
are only two operators.

Computation of the amplitude

In this section, we compute the 2-point amplitude from (4.33):

C
Aoz (k, k) = o — (Ve(00,00)Vie (0,0)): (4.35)

The volume of Ko 2 reads (by writing a measure invariant under rotations and dilatations,
but not translations nor special conformal transformations) [68, 77]:

2 2m [eS)
Vol Koz = d—j =2 / do / dr. (4.36)
| 2| 0 o T

3The subgroup and the associated measure depend on the locations of the two punctures.
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by doing the change of variables z = re!?. Since the volume is infinite, it must be regularized.
A first possibility is to cut-off a small circle of radius € around » = 0 and 7 = oo (corresponding
to removing the two punctures at z = 0,00). A second possibility consists in performing the
change of variables r = €™ and to add an imaginary exponential:

T — oo E—> —o0

Vol Ko o = 4 / dr_ gr / d7 = 47 lim d7 e ™ =47 x 27 lim 6(e),  (4.37)
0 €

such that the regularized volume reads
Vol Ko 2 = 872 §(¢). (4.38)

In fact, 7 can be interpreted as the Euclidean worldsheet time on the cylinder since r
corresponds to the radial direction of the complex plane.

Since the worldsheet is an embedding into the target spacetime, both must have the same
signature. As a consequence, for the worldsheet to be also Lorentzian, the formula (4.37)
must be analytically continued as e = —iE and 7 = it such that

Vol g Ko 2 = 87%6(E), (4.39)

where the subscript M reminds that one considers the Lorentzian signature. Inserting this
expression in (4.34) and taking the limit £ — 0, it looks like the two 6(0) will cancel.
However, we need to be careful about the dimensions. Indeed, the worldsheet time 7 and
energy E are dimensionless, while the spacetime time and energy are not. Thus, it is not
quite correct to cancel directly both §(0) since they don’t have the same dimensions. In order
to find the correct relation between the integrals in (4.37) and of the zero-mode in (4.31), we
can look at the mode expansion for the scalar field (removing the useless oscillators):

X%(2,2) =2 + %a’ko In|z|* = 2° + io/ kT, (4.40)

where the second equality follows by setting z = e”. After analytic continuation k° = —ik9,,
X9 =iX9,, z° = iz9, and 7 = it, we find [320, p. 186]:

X0 =% +o'k3,t. (4.41)

This indicates that the measure of the worldsheet time in (4.39) must be rescaled by 1/a/k3,

such that:
87%16(0)  Clg, 27id(0)

Volys Kop2 — = 4.42
O 0,2 o'k, K0, (442)
This is equivalent to rescale E by o/k° and to use 6(az) = a=1d(x).
Ultimately, the 2-point amplitude becomes (removing the subscript on k°):
Aga(k, k) = 2k°(2m)P~16P-V(k 4 &) (4.43)

and matches the QFT formula (4.16). We see that taking into account the scale of the
coordinates is important to reproduce this result.

The computation displayed here presents some ambiguities because of the regularization.
However, this ambiguity can be fixed from unitarity of the scattering amplitudes. A more
general version of the Faddeev—Popov gauge fixing has been introduced in [83] to avoid
dealing altogether with infinities. It is an interesting question whether these techniques can be
extended to the compute the tree-level 1- and 0-point amplitudes on the sphere. In most cases,
the 1-point amplitude is expected to vanish since 1-point correlation functions of primary
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operators other than the identity vanish in unitary CFTs.* The O-point function corresponds
to the sphere partition function: the saddle point approximation to leading order allows to
relate it to the spacetime action evaluated on the classical solution ¢g, Zg ~ e~5[%l/" Since
the normalization is not known and because S[¢] is expected to be infinite, only comparison
between two spacetimes should be meaningful (¢ la Gibbons-Hawking—York [233, sec. 4.1]).
In particular, for Minkowski spacetime we find naively

5P)(0)

Zo~ o’
°™ Vol Ky’

(4.44)
which is not well-defined. This question has no yet been investigated.

Expression with ghosts

There are different ways to rewrite the 2-point amplitude in terms of ghosts. In all cases, one
correctly finds the 6 insertions necessary to get a non-vanishing result since, by definition,
it is always possible to rewrite the Faddeev—Popov determinant in terms of ghosts. A first
approach is to insert 1 = [ d226®(z) inside (4.32) to mimic the presence of a third operator.
This is equivalent to use the identity

(0| c—1C-1c0Cpcr1c1 [0) =1 (4.45)
inside (4.33), leading to:
Aga(k, k') = _Cs2 (#4(00, 00)cogo Y4 (0, 0)) (4.46)
0,2y Vol K:O,2 k ) 0C0 7k ) S2 .

where 7 (2, Z) = ccVi(2, Z). This shows that (4.16) can also be recovered using the correct
insertions of ghosts. The presence of cycy can be expected from string field theory since they
appear in the kinetic term (13.115).

The disadvantage of this formula is to still contain the infinite volume of the dilatation
group. It is also possible to introduce ghosts for the more general gauge fixing presented
in [83]. An alternative approach has been proposed in [254].

4.2 BRST quantization

The symmetries of a Lagrangian dictate the possible terms which can be considered. This
continues to hold at the quantum level and the counter-terms introduced by renormalization
are constrained by the symmetries. However, if the path integral is gauge fixed, the original
symmetry is no more available for this purpose. Fortunately, one can show that there is
a global symmetry (with anticommuting parameters) remnant of the local symmetry: the
BRST symmetry. It ensures consistency of the quantum theory. It also provides a direct
access to the physical spectrum.

The goal of this section is to provide a general idea of the BRST quantization for the
worldsheet path integral. A more detailed CFT analysis and the consequence for string
theory are given in Chapter 23. The reader is assumed to have some familiarity with the
BRST quantization in field theory — a summary is given in Appendix C.2.

4The integral over the zero-mode gives a factor §(2) (k) which implies k = 0. At zero momentum, the time
scalar X0 is effectively described by unitary CFT. However, there can be some subtleties when considering
marginal operator.
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4.2.1 BRST symmetry

The partition function (3.159) is not the most suitable to display the BRST symmetry. The
first step is to restore the dependence in the original metric g5 by introducing a delta
function

M
dMst T _ - c
Zy= / Qe [9] dggap dg¥ dgbd/gcg(\/ggab - \/!;gab) I I(¢iab)ge (9,71~ Sgnlg.buc],
ckv i=1
(4.47)

Note that it is necessary to use the traceless gauge fixing condition (3.152) as it will become
clear. The delta function is Fourier transformed in an exponential thanks to an auxiliary
bosonic field:

g

M

My g X
Zo= [ S0 [ dy00 B 4,0 dgbdye [[(61,b), e 5w 0 1=Seloa Bl=Sanlobel (4 45)
=1

B My Qckv [g]

where the gauge-fixing action reads:

. i a o
Sil9,0,B) =~ 3 [ @0 B (/3gu — Vi) (4.49)

Varying the action with respect to the auxiliary field By, called the Nakanish-Lautrup field,
produces the gauge-fixing condition.
The BRST transformations are

5egab = ie ﬁcgaba 55‘11 = ie ,CC\I/,

4.50
dec® = ie ‘Cccay Ocbap = € By, 0cBay = 0, ( )

where € is a Grassmann parameter (anticommuting number) independent of the position.
If the traceless gauge fixing (3.152) is not used, then B is not traceless: in that case, the
variation d.b,, Will generate a trace, which is not consistent. Since the transformations act
on the matter action S, as a diffeomorphism with vector ec?, it is obvious that it is invariant
by itself. It is easy to show that the transformations (4.50) leave the total action invariant
in (4.48). The invariance of the measure is given in [237].

Remark 4.3 (BRST transformations with Weyl ghost) One can also consider the ac-
tion (3.153) with the Weyl ghost. In this case, the transformation law of the metric is modified
and the Weyl ghost transforms as a scalar:

5egab =ie Ecgab + i€ gapCuw, 0cCy = i€ Ly (451)

The second term in d.gqp is a Weyl transformation with parameter ecy,. Moreover, by, and
B,y are not symmetric traceless.

The equation of motion for the auxiliary field is
Boy = iTa = i(T% + T5), (4.52)

where the RHS is the total energy—momentum tensor (matter plus ghosts). Integrating it
out imposes the gauge condition g5 = §up and yields the modified BRST transformations

0V =ie L W, 0cc® =ieLoc?, Ocbap = i€ Typ. (4.53)

Without starting with the path integral (4.48) with auxiliary field, it would have been difficult
to guess the transformation of the b ghost. Since ¢* is a vector, one can also write

8ec® = ecPOpc”. (4.54)
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Associated to this symmetry is the BRST current j% and the associated conserved BRST
charge Qp

Qs = / do 3. (4.55)

The charge is nilpotent
Q% =0, (4.56)

and, through the presence of the c-ghost in the BRST transformation, the BRST charge has
ghost number one
Nen(@5) = 1. (457)

Variations of the matter fields can be written as
56\I/ =i [EQB, \I/]:t. (458)
Note that the energy—momentum tensor is BRST exact

Top = (@B, bap)- (4.59)

4.2.2 BRST cohomology and physical states
Physical state 1) are elements of the absolute cohomology of the BRST operator:

ker QB

[¥) € H(Qp) 1= 1o

(4.60)

or, more explicitly, closed but non-exact states:

QelY)=0, A :1¥)=@sx)- (4.61)

The adjective “absolute” is used to distinguish it from two other cohomologies (relative
and semi-relative) defined below. Two states of the cohomology differing by an exact state
represent identical physical states:

) ~ |[¥) + @B |A) - (4.62)

This equivalence relation, translated in terms of spacetime fields, correspond to spacetime
gauge transformations. In particular, it contains the (linearized) reparametrization invariance
of the spacetime metric in the closed string sector, and, for the open string sector, it contains
Yang—Mills symmetries. We will find that it corresponds to the gauge invariance of free
string field theory (Chapter 13).

However, physical states satisfy two additional constraints (remember that b, is traceless
symmetric):

/ do by |9) = 0. (4.63)

These conditions are central to string (field) theory, so they will appear regularly in this
review. For this reason, it is useful to provide first some general motivations, and to refine
the analysis later since the CFT language will be more appropriate. Moreover, these two
conditions will naturally emerge in string field theory.

In order to introduce some additional terminology, let’s define the following quantities:®

b+ = /da bgo, b™ = /do b01. (464)

5The objects bT are zero-modes of the b ghost fields. They correspond (up to a possible irrelevant factor)
to the modes ba: in the CFT formulation of the ghost system (22.131).
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The semi-relative and relative cohomologies H~(Qp) and H°(Qp) are defined as®
H™(QB) =H(Qp)Nkerd™,  H°(Qp) =H (Qp) Nkerd*. (4.65)

The first constraint arises as a consequence of the topology of the closed string worldsheet:
the spatial direction is a circle, which implies that the theory must be invariant under
translations along the o direction (the circle is invariant under rotation). However, choosing a
parametrization implies to fix an origin for the spatial direction: this is equivalent to a gauge
fixing condition. As usual, this implies that the corresponding generator P, of worldsheet
spatial translations (3.26) must annihilate the states:

P, |4) =0. (4.66)

This is called the level-matching condition. Using (4.59), this can be rewritten as

P, ) = / do Ty [4) = / do {Qs,boi} [¥) = @5 / dobou [4) (4.67)

since @p |[¢) = 0 for a state |1} in the cohomology. The simplest way to enforce this condition
is to set the state on which Qg acts to zero:”

b |y) =0, (4.68)

which is equivalent to one of the conditions in (4.63).
The second condition does not follow as simply. The Hilbert space can be decomposed
according to bt as

H =H, ®Hy, Hy=H':=H Nkerd". (4.69)

Indeed, b is a Grassmann variable and generates a 2-state system. In the ghost sector, the
two Hilbert spaces are generated from the ghost vacua ||) and |1) obeying

br Iy =0,  bTIN)=I1). (4.70)

The action of the BRST charge on states [¢,) € H, and |1) € H4 follow from these relations
and from the commutation relation (4.59):

Qelvy) =Hl¢r),  Qslyr) =0, (4.71)

where H is the worldsheet Hamiltonian defined in (3.26). To prove this relation, start first
with H |¢4+), then use (4.59)) to get the LHS of the first condition; then apply Qg to get
the second condition (using that Qp commutes with H, and bt with any other operators
building the states). For H # 0, the state |¢;) is not in the cohomology and |¢4) is exact.
Thus, the exact and closed states are

ImQp = { |v1) € Hy | H [¢hy) # 0}, (4.72a)
ker Qp = { [¥1) € Hr} U {|4y) € Hy | H |3hy) = 0}. (4.72b)

This implies that eigenstates of H in the cohomology satisfy the on-shell condition:
Hy)=0. (4.73)

6The BRST cohomologies described in this section are slightly different from the ones used in the rest
of this review. To distinguish them, indices are written as superscripts in this section, and as subscripts
otherwise.

"The reverse is not true. We will see in Section 4.2.2 the relation between the two conditions in more
details.
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This is consistent with the fact that scattering amplitudes involve on-shell states. In this
case, |1)4) is not exact and is thus a member of the cohomology H(Qg), as well as |) since
it becomes close. But, the Hilbert space 4 must be rejected for two reasons: there would
be an apparent doubling of states and scattering amplitudes would behave badly. The first
problem arises because one can show that the cohomological subspaces of each space are
isomorphic: H;(QgB) ~ H+(Qr). Hence, keeping both subspaces would lead to a doubling of
the physical states. For the second problem, consider an amplitude where one of the external
state is built from [¢)4): the amplitude vanishes if the states are off-shell since the state |)4)
is exact, but it does not vanish on-shell [237, ch. 4]. This means that it must be proportional
to 0(H). But, general properties in QFT forbid such dependence in the amplitude (only
poles and cuts are allowed, except if D = 2). Projecting out the states in #; is equivalent to
require

bt|y) =0 (4.74)
for physical states, which is the second condition in (4.63).
In fact, this condition can be obtained very similarly as the b~ = 0 condition: using the

expression of H (3.26) and the commutation relation (4.59), (4.73) is equivalent to

Q@B /dU boo ) = 0. (4.75)

Hence, imposing (4.74) allows to automatically ensure that (4.73) holds.

Since the on-shell character (4.73) of the BRST states and of the BRST symmetry are
intimately related to the construction of the worldsheet integral, one can expect difficulty for
going off-shell.

4.3 Summary

In this chapter, we derived general formulas for string scattering amplitudes. The general
BRST formalism has been summarized. Moreover, we gave general motivations for restricting
the absolute cohomology to the smaller relative cohomology. In Chapter 23, a more precise
derivation of the BRST cohomology is worked out. It includes also a proof of the no-ghost
theorem: the ghosts and the negative norm states (in Minkowski signature) are unphysical
particles and should not be part of the physical states. This theorem asserts that it is indeed
the case. It will also be the occasion to recover the details of the spectrum in various cases.

4.4 References

o The delta function approach to the gauge fixing is described in [237, sec. 3.3, 183,
sec. 15.3.2], with a more direct computation is in [158].

e The most complete references for scattering amplitudes in the path integral formalism
are [68, 237].

o Computation of the tree-level 2-point amplitude [83, 254] (for discussions of 2-point
function, see [68, p. 936-7, 253, 77, 78, 63, p. 863—4]).

e The BRST quantization of string theory is discussed in [191, 53, 237, chap. 4]. For a
general discussion see [130, 302, 306]. The use of an auxiliary field is considered in [307,
sec. 3.2].
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Chapter 5

Worldsheet path integral:
complex coordinates

In the two previous chapters, the amplitudes computed from the worldsheet path integrals
have been written covariantly for a generic curved background metric. In this chapter, we
start to use complex coordinates and finally take the background metric to be flat. This is
the usual starting point for computing amplitudes since it allows to make contact with CFTs
and to employ tools from complex analysis. We first recall few facts on 2d complex manifolds
before briefly describing how to rewrite the scattering amplitudes in complex coordinates.

5.1 Geometry of complex manifolds

Choosing a flat background metric simplifies the computations. However, we have seen in
Section 3.3 that there is a topological obstruction to get a globally flat metric. The solution
is to work with coordinate patches (¢°,0') = (7,0) such that the background metric §,p is
flat in each patch (conformally flat gauge):

ds? = gapdo®da® = e2¢(79) (dT2 + doz), (5.1)

or
Gab = ez¢5aba Jab = Oab- (52)

To simplify the notations, we remove the dependence in the flat metric and the hat for
quantities (like the vertex operators) expressed in the background metric when no confusion
is possible.

Introducing complex coordinates

z=1T1+io, zZ=1—Io, (5.3a)
24z 2=z
= = 5.3b
A 2 (5.3b)
the metric reads’ i
ds? = 2g,;dzdz = e**(*2)|dz|?. (5.4)

IIn Section 20.1, we provide more details on the relation between the worldsheet (viewed as a cylinder or
a sphere) and the complex plane.
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The metric and its inverse can also be written in components:

e2®
X 922 = gzz =0, (5.5a)

gzi — 26_2¢, gzz — gZZ =0. (55b)

92z =

Equivalently, the non-zero components of the background metric are

. 1 2%

922 = 5 97 =2. (5.6)
An oriented two-dimensional manifold is a complex manifold: this means that there exists a
complex structure, such that the transition functions and changes of coordinates between

different patches are holomorphic at the intersection of the two patches:
w = w(z), w = w(Z). (5.7)

For such a transformation, the Liouville mode transforms as

2

Ow " 20(w,m) (5.8)

2¢(z,2) _
¢ 0z

such that .
ds? = e2?(®)|dyy|?. (5.9)

This shows also that a conformal structure (3.12) induces a complex structure since the
transformation law of ¢ is equivalent to a Weyl rescaling.
The integration measures are related as

1
d%c :=drdo = 5 d?z,  d%z:=dzdz. (5.10)

Due to the factor of 2 in the expression, the delta function 6(2)(z) also gets a factor of 2 with
respect to 6 (o)

1
6@ (z) = 3 @ (o). (5.11)
Then, one can check that
/dQZ 6@ (z) = /d2a @) =1. (5.12)
The basis vectors (derivatives) and one-forms can be found using the chain rule:
1 1
az = 5 (67- - iag-), 65 = 5 (87- + iao-), (5133.)
dz = d7 + ido, dz = dr —ido. (5.13Db)

The Levi-Civita (completely antisymmetric) tensor is normalized by
€01 =€l =1. (5.14a)
€z =3 €% = —2i, (5.14b)

remembering that it transforms as a density. Integer indices run over local frame coordinates.
The different tensors can be found from the tensor transformation law. For example, the
components of a vector V? in both systems are related by

VvE=vo+ivt, Vvi=V0-iv! (5.15)
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such that )
V=V 4V =V?0, +V?0;. (5.16)

For holomorphic coordinate transformations (5.7), the components of the vector do not mix:

ow = Oow _ -
VY= _—-V* VY =—V~ 5.17
0z 0z (5.17)
This implies that the tangent space of the Riemann surface is decomposed into holomorphic
and anti-holomorphic vectors:?
TY, ~TS @ TS, (5.18a)
V*0, e TS}, V?0; e TS, (5.18b)
as a consequence of the existence of a complex structure. Similarly, the components of a

1-form w — which is the only non-trivial form on ¥, — can be written in terms of the real
coordinates as:

1 1
we =g (wo — iw1), wp =g (wo + iwy) (5.19)

such that
w = wpdo® + wido! = w,dz + wzdz. (5.20)

Hence, a 1-form is decomposed into complex (1,0)- and (0, 1)-forms:
T2, ~ QM%) @ QV1(Zy), (5.21a)
w,dz € Q0(%,),  w:dz € Q¥(Z,), (5.21b)
since both components will not mixed under holomorphic changes of coordinates (5.7). Finally,
the metric provides an isomorphism between T and 0%1(%,), and between T%, and

Q19(%,), since it can be used to lower/raise an index while converting it from holomorphic
to anti-holomorphic, or conversely:

V. =g.:V?, V= g.:V". (5.22)

This can be generalized further by considering components with more indices: all anti-
holomorphic indices can be converted to holomorphic indices thanks to the metric:

q4++p_ a4 q_
z ez 2z Z 0z ZZ
T zoz (g )p_ (QZZ)q_T 22 ZZ e (523)
~~ N~
P4+a— P+ P

Hence, it is sufficient to study (p, ¢)-tensors with p upper and ¢ lower holomorphic indices.
In this case, the transformation rule under (5.7) reads

f’q\ ow\" /"q\
T oo = =— ) T#% ..., n:=q—p. (5.24)
~~ 0z -~
P P

The number n € Z is called the helicity or rank.”> The set of helicity-n tensors is denoted by
T".

The first example is vectors (or equivalently 1-forms): V* € T, V, € T~!. The second
most useful case is traceless symmetric tensors, which are elements of 7%2. Consider

B 2However, at this stage, each component can still depend on both z and z: V# = V?(z,%) and VZ =
VZ(z, z).
3In fact, it is even possible to consider n € Z + 1/2 to describe spinors.
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a traceless symmetric tensor 7% = T and g,,T% = 0: this implies 7°' = T° and

T9 = —T11 in real coordinates. The components in complex coordinates are:
T%% =2(T%° +iT°) e 72, T =2(T®° -iT"He T2, T% =0. (5.25)
Note that 1
Tzz = gzigzzir22 = 5(T00 - iTOl)a (526)

and T%, = g,;T*% € T° corresponds to the trace.

Computation — Equation (5.25)

2 2
Tzz — (%) TOO + <g_z) Tll + 2 %% TOl — TOO _ Tll + 2iT01.
T (o T OO0

Stokes’ theorem in complex coordinates follows directly from (A.46):

/d2z (0,0* + 0;v%) = —i}{ (dzv® —dzv®) = =2i ¢ (v.dz — vzd2), (5.27)
dR

where the integration contour is anti-clockwise. To obtain this formula, note that d?z = %sz

and €,z = 1/2, such that the factor 1/2 cancels between both sides.

5.2 Complex representation of path integral

In the previous section, we have found that tensors of a given rank are naturally decomposed
into different subspaces thanks to the complex structure of the manifold. Accordingly,
complex coordinates are natural and one can expect most objects in string theory to split
similarly into holomorphic and anti-holomorphic sectors (or left- and right-moving). This
will be particularly clear using the CFT language (Chapter 20). The main difficulty for this
program is due to the matter zero-modes. In this section, we focus on the path integral
measure and expression of the ghosts.

There is, however, a subtlety in displaying explicitly the factorization: the notion of
“holomorphicity” depends on the metric (because the complex structure must be compatible
with the metric for an Hermitian manifold). Since the metric depends on the moduli which
are integrated over in the path integral, it is not clear that there is a consistent holomorphic
factorization. We will not push the question of achieving a global factorization further (but
see Remark 5.1) to focus instead on the integrand. The latter is local (in moduli space) and
there is no ambiguity.

The results of the previous section indicate that the basis of Killing vectors (3.104) and
quadratic differentials (3.76) split into holomorphic and anti-holomorphic components:

Vi(2,2) =970, +9i0z,  9i(2,2) = $i22(d2)” + i zz(d2)* (5.28)

Similarly, the operators P; (3.65a) and P{f (3.71) also split:
(P1€).. = 2V,€, = 8,¢7, (Py€)zz = 2V 365 = 0:¢7, (5.292)
(PIT), = —2V*T,, = —48;T,.,  (PT); = —2V°Ts; = —40,Ts: (5.29b)

for arbitrary vector £ and traceless symmetric tensor T (in the background metric). As a
consequence, the components of Killing vectors and quadratic differentials are holomorphic
or anti-holomorphic as a function of z:
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such that it makes sense to consider a complex basis instead of the previous real basis:

ker P, = Span{vx(2)} ® Span{vk (2)}, K=1,...,Kg, (5.31a)

ker P] = Span{¢;(2)} @ Span{¢;(2)}, I=1,...,M.. (5.31b)

The last equation can inspire to search for a similar rewriting of the moduli parameters.
In fact, the moduli space itself is a complex manifold and can be endowed with complex
coordinates [212, 237]:

my = toy_1 +itay, my = tar—1 — itor, I=1,...,Mg (5.32)

with the integration measure
dMst = @Mam, (5.33)

The last ingredient to rewrite the vacuum amplitudes (3.136) is to obtain the determinants.
The inner-products of vector and traceless symmetric fields also factorize:

(TlaTZ) = 2/d20\/§gacgdel,abT2,cd = 4/d22 (Tl,zzT2,22 + Tl,ZZTZ,zz)a (5343')
PPN a 1 Z¢Z Z ¢z
€08) = [Coviaaee = [ @ (66 + ). (5.34b)

All inner-products are evaluated in the flat background metric. For (anti-)holomorphic fields,
only one term survives in each integral: since each field appears twice in the determinants
(¢4, ¢;) and (¢, ¢;), the final expression is a square, which cancels against the squareroot in
(3.136). The remaining determinant involves the Beltrami differential (3.65b):

Hizz = aigzzy Hizz = 3@22 (535)

(gzz = 0 in our coordinates system, but its variation under a shift of moduli is not zero).
The basis can be changed to a complex basis such that the determinant of inner-products
between Beltrami and quadratic differentials is a modulus squared. All together, the different
formulas lead to the following rewriting of the vacuum amplitude :

7 / oMo, [4et(@r p)” et PIPL - Z,,[]
I, | det(¢r, 65)| | det(vr, Ps)| Qeav[0]’

(5.36)

where the absolute values are to be understood with respect to the basis of P; and PlT , for

2 _
example |f(mp)|” := f(mr)f(mr).

The same reasoning can be applied to the ghosts. The ¢ and b ghosts are respectively
a vector and a symmetric traceless tensor, both with two independent components: it is
customary to define

c:=c?, c:=c%, b:=b,,, b:=bss. (5.37)
In that case, the action (3.145) reads

Sgnlgsbyd] = % / A%z (bsc + b0,2). (5.38)

The action is the sum of two holomorphic and anti-holomorphic contributions and it is
independent of ¢(z, z) as expected. In fact, the equations of motion are

0,c=0, 9,b=0, 8¢ =0, 9:b =0, (5.39)
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such that b and c (resp. b and ¢) are holomorphic (anti-holomorphic) functions. Then, the
integration measure is simply
9 Mg
/\Bldtz = /\ B]Bjdml/\ﬁlj, B] = (/,L],b). (540)
i= I=1

Note that B; does not contain b(Z), it is built only from b(z).
Finally, the vacuum amplitude (3.163) reads

C MC
c ot “ 2 -
Z :/ @My SO / d(b,5)d(c,e) [ e(=? |(ur,b)|* e~ Senlee Z,[4].
T Im, | det (=0 1;[1 ,Hl

(5.41)
The c insertions are separated in holomorphic and anti-holomorphic components because,
at the end, only the zero-modes contribute. The measures are written as d(b,b) and d(c, ¢)
because proving that they factorize is difficult (Remark 5.1).

Remark 5.1 (Holomorphic factorization) It was proven in [21, 38, /6] (see [212, sec. 9,
68, sec. VII, 286, sec. 3] for reviews) that the ghost and matter path integrals can be globally
factorized, up to a factor due to zero-modes. Such a result is suggested by the factorization
of the inner-products, which imply a factorization of the measures: the caveat is due to the
zero-mode determinants and matter measure. Interestingly, the factorization is possible only
in the critical dimension (3.125).

5.3 Summary

In this chapter, we have introduced complex notations for the fields, path integral and moduli
space.

Since the CF'T language will play an important role in the rest of the book, the reader
who is not familiar with it is advised to proceed first to Part VII before reading the next
chapter.

5.4 References

e Good references for this chapter are [34, 68, 210, 212, 237].

o Geometry of complex manifolds is discussed in [34, sec. 6.2, 210, chap. 14, 68].
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Chapter 6

Worldsheet CFT

In Section 3.1, we have seen that symmetries of the string worldsheet action implies that
the theory must be a conformal field theory (CFT).! Next, in Chapter 5, the worldsheet
action and path integral have been rewritten in complex coordinates. This is everything we
need to describe the string worldsheet theory in the CFT language, mostly giving up the
Lagrangian description. The goal of this chapter is to put together all the information on the
worldsheet CFT which are needed to perform string theory computations. For this reason,
the chapter contains relatively few new concepts and is better viewed as a reference. The
reader is encouraged to skim through it and come back as needed.

6.1 Description of the CFT

A string background is defined by:
e a worldsheet CFT of central charge ¢ = 0;
e the string coupling g;.

The fact that not all background deformations correspond to deformations of the CFT was
described in details in [24]. Nonetheless, for concision, we will use interchangeable “worldsheet
CFT” and “background” since we keep the string coupling fixed in most of this review.

The worldsheet CFT is described by the tensor product of the following systems (see also
Sections 3.1 and 3.4):

o a matter CFT with central charge ¢, = 26, composed of:

— D non-compact scalar fields X* corresponding to D non-compact dimensions;

— a generic CFT with central charge ¢yt = ¢y — D describing the internal degrees
of freedom;

o universal (b, c) anti-commuting ghosts with central charge cgn = —26.

For simplicity, we consider the case when these systems are each a CFT and do not interact
with each other. Hence, the total central charge satisfies:

c=c¢m~+cgh =D +ciny —26 =0. (6.1)

1Starting from this chapter, we will rely heavily on CFT tools. The reader who is not familiar with these
techniques should first read Part VII before proceeding.
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The non-compact scalar fields form a non-linear sigma model with target space metric
G (X), as described by the Polyakov action (3.3), characterizing some curved spacetime
manifold Mp. In this review, we will mostly consider D free scalar fields (Section 22.1),
such that the target space Mp is the flat D-dimensional Minkowski (or Euclidean) space,

N = diag(£1, 1,1;). 1. (6.2)
“1

A plus (resp. minus) sign corresponds to a spacelike (resp. timelike) scalar field with e = +1
(resp. € = —1) in the notations of (22.2), and such that the target space is Euclidean
(resp. Lorentzian). We also denote the Regge slope by o/ = £2, where £2 was the normalization
of the scalar action in (22.1).

The term “internal CFT” indicates any remaining matter (on the worldsheet) which do
not describe non-compact dimensions. They may have a geometric interpretation in terms
of a compactification X, of d spacetime dimensions associated with compact scalar fields
Y* forming another sigma model. The latter can be combined with the D-dimensional to
describe a target space manifold

M = MD X Xd. (6.3)

We could also consider more complicated backgrounds, for example by fibrating Xy over
Mp or by adding fluxes, in which case both CFTs would interact. Moreover, we can also
consider non-geometric degrees of freedom, meaning that this part of the background does
not correspond to spacetime dimensions. As emphasized earlier, this should not be surprising
since the worldsheet CFT, in general, describes degrees of freedom living on the worldsheet:
there is no need to associate all of them to embedding maps from worldsheet to spacetime
(see Section 3.1 where these maps were introduced).” Why do we need an internal CFT?
First, it is needed to reproduce the low-energy physics of our 4-dimensional Universe, which
means that D = 4 and thus ¢y = 22. Second, we may learn more about string theory by
considering general backgrounds. Nonetheless, in most of this review, we will ignore the
internal CFT.
The ghosts are described by a first-order (b, ¢) system with parameters (Section 22.2):

e=1, Agh = 2, Cgh = —26, dgh = —3, agh = —1. (6.4)

Remember that this CFT is free and universal (i.e., present in any string theory).

Finally, open and closed strings are distinguished by the topology of the worldsheet W.
If the spatial direction o of W is periodic (topologically S'), then we have closed strings; if
it is an interval, then we have open strings:

closed strings: o €[0,2m),0 ~ o + 2m, (6.5)

open strings: o € [0, 7). )
For closed string, we will impose periodic boundary conditions on the scalar fields X*, while
for open strings we can use Neumann or Dirichlet conditions:

periodic : XH*(1,0 4 27) ~ X¥(1,0),
Neumann : 0, X" (1,0)|law =0, (6.6)
Dirichlet :  X*(7,0)|aw = X{',
where X' is a constant vector. Boundary conditions imply relations between left- and
right-moving modes. Given p scalar fields with Neumann boundary conditions, they describe

the (p + 1)-dimensional worldvolume of a Dp-brane. We will consider a space-filling brane
with p = D — 1 to avoid dealing with Dirichlet boundary conditions.

2Instances of non-geometric CF'Ts (at least in some regimes) are WZW and Gepner models.

88



Remark 6.1 (Definition of a CFT) A 2d CFT is uniquely characterized by:
o its central charge c;
o the weights (hs, h;) of its primary operators;
o the structure coefficients C;ji, associated with its primary operators.

Important results from Sonoda [287, 288] show that the CFT is consistent on the sphere if
its 4-point correlation functions are crossing symmetric, and it is consistent on all Riemann
surfaces if its torus 1-point correlation functions are modular covariant.

6.2 Properties of the CFT

The objective of this section is to define the operators of the worldsheet CFT. These operators
act on states which all together form the Hilbert space H of the CFT which represents string
states, which will be the topic of later chapters.

The fields X*(z,z) are not primary. Instead, the primary fields in the scalar CFT are
the holomorphic and anti-holomorphic U(1) currents i0X*(z) and i0X*(Z), together with
the vertex operators e*X(#%) (to be discussed later), where k, will be interpreted as the
momentum of the string center-of-mass. The ghost fields are b(z), b(2), c(z) and &(z), and
they are all primary. The weights of the different fields are:

R(i0X*) = (1,0),  h(b) = (2,0),  h(c) = (-1,0), 6
R(iOX*) = (0,1),  h(b) =(0,2),  h(e) = (0,-1). (6.7)

This implies that the operators have the following mode expansions:

Do SR o SR CEbIE

" (6.8)

i0X" = \/72 L b(z) = Z :+2’ () = Z ;fir

n

While i0X*(z) and i0X*(Z) are holomorphic and anti-holomorphic fields, this is not the case
of X#(z,z). Boundary conditions (periodicity for the closed string, Neumann for the open
string) impose the relation

Qo = 5{0, (69)

such that the mode expansion for X* is:

XH(2) = o —1\/7agln|z| +1\/72(°‘" - _52—"). (6.10)

The relations between o and the momentum of the center of mass of the open and closed
strings will be given in Sections 6.2.1 and 6.2.2.
The conformal vacuum |0) is the tensor product of the conformal vacua of each of
individual CFT
10) :=10)1, ® |0)gp (6.11)
and satisfies:
Vn>-1: af|0)=ak|0)=0,
Vn>—2: b,[0) =b,|0)=0, (6.12)
Vn>1: ¢,|0)=¢,|0)=0.
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The string Hilbert space H is built by acting on |0) with the operators which do not appear
in the constraints above (and all possible states from H;n;, which are kept implicit). Since
the ghost CFT is not unitary, there is a state with a lower energy which serves as a more
natural reference state to build H. In the scalar sector, the zero-modes can be used to obtain
a continuous set of p*-eigenstates. These states are different for the open and closed string
theories, and will be discussed in Sections 6.2.1 and 6.2.2.

We define two normal orderings with associated sets of creation and annihilation operators:

o conformal normal ordering :0: (with respect to the conformal vacuum)

— creation: {@n<0,bn<—2,Cn<1}

— annihilation: {an>0,bn>—2,¢cn>1}
« energy normal ordering ;O (with respect to the energy vacuum)

— creation: {an<o,bn<0,Cn>0}

— annihilation: {@n>0,bn>0,Cn>1}

The modes can be obtained from the fields by a contour integral:

dz dz
no__ " — n+1 n—2
ah =14/ o ?{ i 2 Ti0XH(z), b, 7{271_1 b(z), =957 c(2),

& & (6.13)
B — w b — Z —n+1 s — _Z sn—2 <3
ak \/ j{ ol 2 Z"i0X"(2), bn }{ ol 2 b(2), Cn ot 2 c(2).
For creation operators, we can also write:
2 1 2 1 -
oy = ———i0" X At = —— i TIX
Yon o (n—1)! i 0), Yon o (n—1)! i (0),
1 - 1 -
bop ——8"720(0),  b_p,~ —— 3" 2(0), (6.14)
(n— ) (n—2)!
1 _
n—+1 = ~ n—+1~
Cop R CE] 1)' 9" ¢(0), Cop N CEm] 9" ¢(0),

where =~ means that this relation is valid when acting on the vacuum. The non-vanishing
commutation relations between the modes are:

[afna a;] = [afm C_“Z,] = m6m+n,0 771“/7 {bma Cn} = {Em; En} = 6m+n,07 (615)

The algebra makes it clear that the holomorphic and anti-holomorphic sectors are
decoupled, since (anti-)commutators involving one mode of each sector vanish. Hence, in the
rest of this section and except stated otherwise, we describe only the holomorphic sector:
the formulas for the anti-holomorphic sector follows by adding a bar on all operators as
above. The only subtleties come from the zero-modes and from the definition of the energy
vacuum since they are different in the open and closed strings: these aspects are considered
in Sections 6.2.1 and 6.2.2. We will introduce successively the important operators built
from the scalar and ghost fields, their commutators, and their OPEs. The reader can consult
Chapter 22 for the details of the construction.

The primary field i0X*(z) is a U(1) current:

TH(z) = iiaxw (6.16)

The conserved charge is the spacetime momentum of the string center of mass and related to
the zero-mode, see Sections 6.2.1 and 6.2.2 for details.
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The level operators NX, N® and N¢, and the associated number operators NX, Nf{ and
N¢, are defined as:

1
NX .= Z nNX, NX:=Za_,- oy, (6.17a)
n>0 n
Nb:=>"nN:,  N.:=b_ncn, (6.17b)
n>0
N¢ .= Z n N, Ny :=c_pbn. (6.17¢)
n>0

The number operator with index n counts the number of modes with frequency n. The
additional factor of n~! in the scalar number operators compensates for the n found in the
commutation relation (6.14). The level operators are integers and measure the contributions
of the modes to the energy of a state, where the energy of each mode equals its mode number.
The total level operator is the sum

N := NX + N® 4+ N¢, (6.18)

and will be proportional to the spacetime mass of the string states.
The holomorphic energy—momentum tensor T'(z) is a quasi-primary operator with weight
h = (2,0). The mode expansion in terms of the Virasoro modes is:

T(z) =) Zf_’;z. (6.19)

n

Since the scalar and ghost CFTs are decoupled, T'(z) is the sum of their respective contribu-
tions:

T(2) := Tm(2) + Ten(2), (6.20a)
where

Tm(z) = —5 0X - 0X, (6.20b)

Ten(z) = —2:b0c: — :0be:, (6.20c)

and similarly for the anti-holomorphic sector (we continue to leave the internal CFT implicit).
The corresponding Virasoro modes are:

Ly, = L™ + Lgh, (6.21a)
1
LY = 3 Z W Olm—nt (6.21Db)
n
Leh = Z (n+m) bp—ncp:. (6.21c)
n
Splitting the zero-modes contributions for the scalar fields, we get:
1
Ly = 3 Z O * Om—n + 00 - O, (m # 0), (6.22a)
n#0,m
Q
Ly = 70 + N¥. (6.22b)
In the energy normal ordering, the ghost Virasoro modes become:
LEM =) " (n+m) ibm—ncn s — m.o, (6.23a)

n
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and in particular:
LB = N® 4 N°—1. (6.23b)

Finally, it is convenient to separate the zero-mode and oscillator contributions as:

a2

=0 _ 14Ty, Lo:=N=NX4+Nb4tnNe (6.24)

L() = 2

If we had considered the internal CF'T, its contribution would be added to Eo.
The anomalous global U(1) symmetry for the ghost number Ngy, is generated by the ghost
current:

. dz .
j = —:be, Negh,1, = ]{ 2—71_i_7(z), (6.25)

such that
Ngh(c) = 1, Ngh(b) = —1. (626)

Remember that Ngn = Ngp, 1. in the left sector, such that we omit the index L. The modes
of the ghost current are

- Z by—nCnt Ngh = jo=— Z :b_pCni. (6.27)

Note that there is an ordering ambiguity for jo = Ngn: we fix it by requiring the conformal
vacuum to have vanishing ghost number:

Ngn |0) = 0. (6.28)
Then, we wan write:
Ngh = ngh + cobo, ﬁgh = Z(c_nbn —b_ncn). (6.29)
n>0

The holomorphic BRST current reads
jB(z) = :c(2) (Tm(z) + %Tgh(z)) i+ g d%c(z) (6.30a)
= ¢(2)T™(2) + :b(2)c(2)dc(2): + g d%c(z). (6.30Db)

The holomorphic BRST charge is then obtained by the contour integral:

QB,L = j{sljB(z) (6.31)

The mode expansion of the BRST charge is:

Qs = iem | L™, + Lg cemIim 4+ =) (n—m)ic_menbmin: (6.32a)
Sien ( %) =% D

m

and, using the energy normal ordering, it becomes:

1
Q= Z em L2, + 3 Z(n —Mm)iCmCnbmin+ — Co, (6.32b)
n

m,n
The BRST operator can be decomposed in terms of the ghost zero-modes as

Qs =coLo —boM + Qp (6.33a)
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where

o~ m ]_ * *
QB = Z cemLiy — 3 Z (m—mn)icemCnbmins , (6.33Db)
m#0 m,n#0
m+n#0
M:=M,=> mc_mcm (6.33c)
m#0
and R
Nen(@QB) =1, Ngn(M) =2. (6.33d)
The identity Q% = 0 implies the relations
[Lo,M] = [Qp, M] = [@5,Lo] =0, Q% = LoM. (6.34)
The relevant commutators are:
[aﬁn 057’/7,] = m(sm—i-n,O 77””7 {bma cn} = Om+n,0, (6353)
[Lim,0k] = —nal, ., N5, a—n] = @—ndm n, (6.35Db)
[Lym, by] = (m - n)bm+n, [Lin,cn] = —(2m + n)emin, (6.35¢)
[N, b_pn] = b_nOimm, NS, c—n] = C—nbmn; (6.35d)
[Ngha bn] = _bna [Ngha Cn] = Cn. (6356)
.. . . 3
[]ma]n] = m6m+n,0; [Lma]n] = —NJm+4n — 5 m(m + 1)5m+n,0a (635f)
{@B,bn} = Ly, (@B, Ln] =0, [Ngn, @8] = @B- (6.35g)

In particular, Ly commutes with the zero-modes:
[Lo,ag] = [Lo, bo] = [L(),C()] =0. (636)
The operator M in (6.33c) is part of a SU(1, 1) algebra:

[My,M_] = Ngn,  [Ngn, Ms] = +2M, (6.37)

where J/\fgh is the ghost number without zero-modes (6.29) and

11
M= n; ~b_nbn. (6.38)
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The OPE between the different operators are:

X0 )X (W) ~ — 2 (e —w),  OXP(2)0X"(w) ~ _O"g“" m (6.39)
o(z)b(aw) ~ 1 — b)ew) ~ 1 o b@b) ~ 0, c(z)e(w) ~ 0,  (6.39b)
T(2)0XH(w) ~ ZX_” g‘;g 62;‘? 1(”“’), (6.39¢)

T(2)b(w) ~ (jb_(z))z + ‘zbfwij, T(2)e(w) ~ (;(:;2 + ‘305“2 (6.39d)
i) ~ ~ 2 ey~ A i@0w) ~ N (@) 2 (6.350)
H@iw) ~ =g (6.39%)

T(@i(w) ~ 7 :i))3 + (zjfwu)))z + ‘3”}“2, (6.39g)

T(2)T(w) ~ (j{(gz 21}11‘2 (6.39h)

T(e)jn(w) ~ 220 4 22, (6.391)

) ~ s+ s T paetw) ~ DL (630
5(2)0X (w) ~ (czai(%l + :a(czai(lfw):, (6.39K)

The OPE (6.39g) implies that the ghost number is not conserved on a Riemann surface
with genus g # 1:

N¢— N°=3-3g, (6.40)
and leads to a shift between the ghost numbers on the plane and on the cylinder:
3
Ngr=N3' + 5 (6.41)

6.2.1 Closed string

The relations between the zero-modes of i9X* and i0X and the (centre-of-mass) momentum
p* read:
a/

ay =ah = Ep". (6.42)
The conjugate of p* is the centre-of-mass position z*:
[z#,p"] = in"". (6.43)

Vertex operators Vi are primary operators characterized by the momentum k* of the
center of mass: . )
Vi(z, 2) := ¥ X(=2) (6.44)

where k - X :=n,,k*X". They correspond to eigenstate of the momentum operator p* with
eigenvalues k*. These operators have conformal weights:

o'k? k2
h) = (%2
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Note that this operator has both left- and right-moving parts: however, the anti-holomorphic
component is invisible in most computations since it has vanishing contractions with all
other operators which are holomorphic. The OPEs involving this operator are:

o' k* Vig(w,w)

i0XH(2)Vi(w, @) ~ 5w (6.46a)
T(2)Vi (w, @) ~ O‘Z“Q 2(_“’5’2) 3‘2“(_“’1’”“_’), (6.46D)
Vie(2, 2) Vi (w, @) ~ Vi (w0, 0) (6.46¢)

(z — w)—'k /2"

Considering both the holomorphic and anti-holomorphic sectors, we introduce the combi-
nations:

LE =L, + L, (6.47)
and 1
br=b,+b,, &= 5 (en £ 2n). (6.48)

The normalization of b is chosen to match the one of Lt (6.47), and the one of ¢t such
that

{br_ir_u C;‘;} = Om+n, {b;u c;} = Omtn- (6.49)
We have the following useful identities:
bobt =2b,b,, cct = %cnén. (6.50)

The Virasoro operators (6.22) for the scalar fields are:

1 %
L " n — k. y .51
m=5 E O * Oy, + 5 k-om (m#0) (6.51a)

n#0,m
f,mzl Za @ +\/a—lk-.o7 (m #0) (6.51Db)
m 9 n m—mn 2 m ) .
n#0,m
/k2 _ /k2 _
o= a4 +NX, Im= O‘4 + NX, (6.51c)

Combining these expressions with the ghost Virasoro modes (6.23), we get:

Lf = "‘/2’“2 —24ILf = K L N+A, (6.52a)
Ly =Ly =N-N, (6.52b)
LE=N=+N, (6.52c)
N =N*+N°’+N°, (6.52d)
N =N*+ N+ Ne. (6.52¢)

Following the decomposition in the holomorphic sector (6.33a), the BRST charge of the
closed string can be decomposed as:

QB =coLg—bogM + Q\B + Eofzo - l_)oM + GB (6.53&)
=t L —bfM* +cy Ly —bg M~ +QF, (6.53b)
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where M is defined in (6.33c), @ B in (6.33b), and M and Qg are obtained by replacing the
holomorphic modes by their anti-holomorphic counterparts. In the second expression, we
have introduced the combinations:

M* = %(M +M), Qi=Qpzt Q5. (6.53c)

The operators M and M are each part of a different SU(1, 1) algebra. However, it is more
useful to consider combinations of the operators. Indeed, when acting on states which satisfy
the level-matching condition b; = L; = 0, the BRST charge is simplified to:

Qp=clLf —bIM*t +Q7 (6.54)

which has the same form as for the open string. In particular, MI := M forms a SU(1,1)
algebra with the total ghost number without zero-mode Ng1, and with the operator M*:

M, M*] = Ngn,  [Ngn, M{] = £2M1, (6.55)
where 1
Mt = Z - (b_nbn + b_nbn). (6.56)
n>0

The scalar vacuum with momentum k is obtained by acting with the operator V;
k) = VA(0,0)[0),, = €*X(0,0) 0}, (6.57)
and the ghost vacuum with ¢; and ¢;:
) = 181 [0), = c(0)2(0) [0}, - (6.58)
The total vacuum state reads:
[k, W) = k) © 1) g = eVi(0,0) |0) (6.59)

where |0) is the complete SL(2, C)-invariant vacuum. The vacuum (6.59) satisfies the following
properties:

pM|ka\L~L> :kﬂ|k,¢¢>, b0|ka\L~L> :EO|k7~L~L> =0,

The energy of this state is:

- o'k?
Lok, 14) = Lok, 1) = ( L 1) [y
alk2 (661)

For k* = 0, the energy is negative because of the contribution from the ghosts.
The ghost vacuum is degenerate because acting with ¢y and ¢y does not change the energy.
We define the following additional vacua:

|k7T\L> =0o |kv~jr~L> ) |ka~LT> =Cp |k,~L\L> ) |k7TT> = CpCo |k’ ~1/Jf> . (662)
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We can also summarize each vacuum according to which combination of (bg, co, bo, ¢o) kills it:

bO |k‘7~l/\1/> = EO |k,l~L> = 0’ Co |ka/N'> = BO |kaT~L> = 07
bo |k, 41) = & |k, 41) =0, co |k, 1) = & |k, 11) = 0.

At this stage, taking |k, ) as a reference state for the CFT is mostly a matter of convention.
From the point of view of the CFT, it is slightly more natural because by and by are
annihiliation operators for the SL(2,C) vacuum, so it makes sense to work with the state
of lowest energy which also satisfies this property. We will also see that the state |k, )
plays a distinguished role in the BRST quantization (because by and bo appear in the string
propagator), which motivates using it as a reference. Note that Hilbert spaces will be
discussed in 77.
An alternative set of vacua can be written using he combinations (6.48):

(6.63)

|k, =) == cf |k, 44) s |k, +) :=c, |k, ), |k, 1) == 2c5 cf [k, L), (6.64)
and they satisfy:
bE)i_ |ka~lr~lf> = bo_ |k7 ~L~l'> =0, ba |k’ _> = CE)F |k" _> =0,
+ _ i _ (6.65)
by |k, +) =¢; |k, +) =0, cg |k, 1) = ¢ |k, 1) =0.

The sign inside the ket matches the sign of b(jf which annihilates it.
The ghost number of the vacua are:

Ngh|k70>=0; Ngh|k7u>=2|ka~lﬁlf>a Ngh |k’TT>=4|k7T>a
Ngh |k7 TJ/) =3 |kaT\L> ) Ngh |k,J,T> =3 |k’\LT> ’ (666)
Ngh |ka_>:3|k7_>a Ngh|k7+>:3|k’+>

For the closed string, BPZ conjugation (21.77) use the inversion I*(z) = 1/z. The modes
transform under parity and the different conjugations as:

e parity:
QzHQ = z#, QptQ = p*,

QarQ=a", Q,Q=b_p, Qe Q=¢_p, (6.67)
QarQ=ao" ,  Qb,Q=b_,, QQ=c_,.

e Hermitian adjoint:

(xu)T =z, (pu)T = pH,
(e =aot,, () =bn, (cn)l=cn, (6.68)
(@t =a*,, (b)) =b_,, () =c_,.

e BPZ conjugation:
(xﬂ)t =z, (pu)t =-p",
() =—a,,  by=b_n &, =—con, (6.69)

(ah)t =—-a",, by, =b_p, Cy, = —C_p.-

e star conjugation:
@) =2,  (p")" =-p",
(aﬁ)* = _O‘ﬁ7 b; = bna c; = —Cn, (670)

~ L\ * =~ x 7 —x =
(aZ) = —ap, by, = bn, Cp = —Cn.
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We derive the useful relations for the ghosts:
) =bf,  QFQ = b7,
()t = —cF, QcEQ = +ct.

We can show that L is BPZ-even and Hermitian, while @ is BPZ-odd and Hermitian:

(6.71)

L} = Ly, L = Ly,

; \ (6.72)
QB = QB QB = _QB~
The conjugates of the vacuum with non-zero momentum are
(k.01 =k, 0, (=k,0|=[k,0)",  |-k,0)=k,0)". (6.73)

We remind that |k,0) = V4 |0) denotes an eigenstate of the momentum operator p*, which
explains why its BPZ conjugate is (—k, 0| instead of (k,0|. In the same way, the momentul
label in the bra denotes the p*-eigenvalue:

(k,0|p* = k*(k,0]|. (6.74)
From the expressions above, we can obtain the conjugates of the energy vacua:
e BPZ conjugates:
(ky b | = =k )" = (K, 0] c_12s,
(ko 1 | i= [ =k, 1) = —(k, 0] c-18-1c0,
)

e— | t [ - -,
<k,J,T | T | k,\LTt <k70| c—l_c—1007 (675)
(k,—| == |—k,—)" = —(k,0| c_1e_1¢7,
(k,+| = |-k, +)" = —(k, 0| c_1E-1¢5 ,
(k, 11| i= | =k, M) = (k, 0| c—18-1c080 = 2{k,0] c_18_1¢5 ¢ -
e Hermitian conjugates:
o, b = =k, 4L 1, [k AT = (k11 ],
et =kt 1, [k DT =(k, 1], (6.76)
|k7_>]L :<ka_|a |k7+>T :<ka+|

The linear inner-product of closed strings corresponds to the BPZ inner-product (21.154)
with an additional insertion of ¢, :

(A, B) == (A|c;|B). (6.77)

The form of this inner-product will be motivated in Chapter 13. We will see in ?? that
the Hilbert space for the closed string must be restricted to the subspace H Nker b, , which
means that states must be annihilated by b, .

It is bilinear, non-degenerate in the ker b, subspace, and satisfies the following relation:

(4, B) = (—1)a+ADA+IB) (B ) (6.78)
(4,QzB) = (1) (@54, B) (6.78b)
= (-1)4IB1(B,Qp4), (6.78¢)

(QBA, B) (6.78d)
= (=1)IAHIBIHAIBL (95 B, A). (6.78¢)
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The vacuum is normalized as
(k, 4L cogo k', 44) = (k,Olc_12_1coGocir |k, 0) = —(2m)P 6P (k — k). (6.79)

In terms of c(jf, we have:
1
(k, H leg g 1K, 40) = (k. Oleoreacy aralk,0) = =5 2m)P 6P (k— k). (6.80)

Remark 6.2 Sometimes, (k| is defined to be the BPZ conjugate of |k) [57]. In that case,
(k,0| p* = —k*(k,0| and the RHS of (6.79) would contain 6P)(k + &').

Computation — Equation (6.78)
The derivation is similar to (21.156), requiring a little additional care because of c; :

(4, B) = (0]4(0)'c; BO)[0) = — (0] (A(0)!(~c3)B(0))'|0) (6.51)
~ (01A(0)cy B(0)'[0) = —(~1)IOH+ED(=1)IB1 (0] B(0)"c5 A(0)[0) ,  (6.82)
where we used (6.71).
The second relation is found as follows:
(A,@QpB) = (Acy Qp|B) = (Alc; @B{by ; ¢y }B) (6.83)
<A|c0 Qub; 5 |B) + (Alcy Qe b5 1B) (6.84)
=(A b5 F ¢ |IB) — (A|cgbO_QB o |B) (6.85)
(A|QB o |B) + (Albg BC, |1B) (6.86)
—(014(0)'Qz ¢; |B) = (~1)* (01(Q5A(0))'c;|B),  (6:87)
where we inserted {b,,cy} = 1, used that b, |B) = 0 twice, {@B,b;} = L, and
[Ly,co] =0, then (¢ )? = 0 and Q% = —Qp. Remember that {Qp,c, } # 0, which

explains why we have to follow the approach above.
The remaining relations follow immediately from the previous two.

6.2.2 Open string

In this review, we focus mostly on the closed string. However, string states and free SF'T
are simpler for the open string such that it is useful to also discuss them. We simply state
formulas without providing much context: the reader is referred to the literature for more
details [34, 159, 237].

Open strings live on Riemann surfaces with boundaries. At tree-level and for oriented
strings, the corresponding surface is the disk which can be mapped to the upper half-plane
(UHP) Im z > 0.

Boundary conditions must be imposed on the boundary (the real axis, in the UHP
representation), and one can choose either Neumann or Dirichlet. We consider only the first
type, which implies:

OXH(2) = 0X*"(2), b(2) = b(2), c(z) =¢(z), forImz=0 (6.88)
which identifies the holomorphic and anti-holomorphic modes:

ab=at,  by=b,,  Cp=0Cy (6.89)
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The doubling trick allows forgetting about the anti-holomorphic fields and only with holo-
morphic fields defined on z € C:

OXH(z) := 0XM(Z), b(2) := b(Z'), c(z):==¢(#), forImz<0, 2 :=2* (6.90)

The relation between the zero-mode of i9X* and the (centre-of-mass) momentum p#
reads:

af = V2 pt. (6.91)

Note the factor of 2 compared with the closed (6.42) (in practice, this implies that most
formulas for the open string can be found from the ones for the closed string by multiplying
all momenta by 2). The conjugate of p* is again the centre-of-mass position z*:

[z#,p"] = in"". (6.92)

Open string vertex operators Wi (z) with momentum k* are primary operators defined
on the boundary z € R:?

Wi(z) = e X@):, (6.93)
These operators have conformal weights:
(W) = (oK%, d'k?), (6.94)
and OPEs:
i0X*(z)Wi(y) ~ o'k I;VkT(yy), (6.95a)

ook Ve OWi(y)
(z-y)? =z-y’
Witr (y)
(@ —y) 20 Fk’

On the disk, the CKV form the group SL(2,R) and |0) denotes the SL(2, R)-invariant
vacuum. The scalar vacua |k) are created from it by acting with Wy:

T(z)Wi(y) (6.95b)

Wi (z)Wi (y) ~ (6.95¢)

|k) = W(0)]0), (6.96)
and satisfy:
p* k) = k" |k), Yn>0: aflk)=0. (6.97)
The ghost vacuum is obtained by acting with c;:
D gn 7= €110)gn = ¢(0) [0)g, - (6.98)
such that the total vacuum state reads:
Iy 1) i= k) ® 1) g i= Wi (0) [0) , (6.99)

where |0) is the complete SL(2,R)-invariant vacuum. Acting with ¢y leads to another
vacuum:annihilate the vacuum above:

|k, 1) = co |k, d) := cocq |k, 0) . (6.100)
The zero-point energy of the vacuum is:

Lo |k, {) = ('k* — 1) |k, ) . (6.101)

3The normal ordering of operators on the boundary must be modified [237], but the details are not
important for us.
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The ghost numbers of the vacua are:
Ngh|k70> =0a Ngh|k‘7~l/> = |k,~l'>) Nghlk’T> = 2|k7T> (6102)

For the open string, BPZ conjugation (21.77) use the inversion I~ (z) = —1/z, and parity
(21.34) o = 7. The modes transform under the different conjugations as

e parity:
Qa, Q= (-1)" ap, 0b,Q = (—1)" by, e, Q= (—-1)"cp. (6.103)
e Hermitian adjoint:
ol =a_y,, bl =b_,, el =c_p. (6.104)
e BPZ conjugation:
b = (-1)"Ma_,, b, =(-1)"b_p, c,=(-1)"Tc_,. (6.105)
o star conjugation:
ap = (=", b =(=1)",, ¢ =(-1)"cn. (6.106)

Like for the closed string, Lg is BPZ-even and Hermitian, and @ g is BPZ-odd and Hermitian:
Ll =Lo, LY=Ly,

(6.107)
QL=Qs Q%=-Qs.
The conjugates of the vacuum with non-zero momentum are
(k,0] := |k,0)",  (=k,0| = |k,0)", |-k, 0) = |k,0)*. (6.108)
From those, we can derive the following expressions for the energy vacua:
e BPZ conjugate: ,
(k4| := |-k, i)t =(k,0]c_1, (6.100)
(k,T|:== |-k, 1) =(k,0| c_1c0-
The last expression follows from (coc)? = (—cg)c—1 = c_1co.
o Hermitian conjugates:
k) =k, 41 e = (k1. (6.110)
The linear inner-product for the open string is just the BPZ inner-product (21.154):
(A, B) := (A|B) (6.111)
which satisfies the following relations: We have the following important identities:
(A,B) = (—1)4lIBI (B, A), (6.112a)
(4,Q5B) = (1) (QpA, B). (6.112D)

The vacuum is normalized with

(k, 1 leolk’s 1) = (k| eolks ) = (K, Oc_1coca|K/,0) = —=(2m) P8P (k — k). (6.113)

6.3 References

o Open bosonic string [89].
o Non-geometric backgrounds [232].
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Chapter 7

Introduction to off-shell string
theory

In this chapter, we introduce a framework to describe off-shell amplitudes in string theory. We
first start by motivating various concepts — in particular, local coordinates and factorization —
by focusing on the 3- and 4-point amplitudes. We then prepare the stage for a general
description of off-shell amplitudes. We focus again on the closed bosonic string only.

7.1 Motivations

7.1.1 3-point function

The tree-level 3-point amplitude of 3 weight h; vertex operators' 7; is given by

3
Aoz = <H "//z(zz)> o (21 — zp)* M ~"2 % perms x c.c. (7.1)
=1 S2
There is no integration since dim Mg 3 = 0.
The amplitude is independent of the z; only if the matter state is on-shell, h; = 0, for
example if ¥; = ccV; with h(V;) = 1. Indeed, if h; # 0, then Ag 3 is not invariant under
conformal transformations (20.38):

az+b
z_>fg(z)=cz+d

(it transforms covariantly). This is a consequence of the punctures: the presence of the latter
modifies locally the metric, since they act as sources of negative curvature. When performing
a conformal transformation, the metric around the punctures changes in a different way as
away from them. This implies that the final result depends on the metric chosen around
the punctures. This looks puzzling because the original path integral derivation (Chapter 4)
indicates that the 3-point amplitude should not depend on the locations of the operators
because its moduli space is empty (hence, all choices of z; should be equivalent).

The solution is to introduce local coordinates w; with a flat metric |dwi|2 around each
puncture conventionally located at w; = 0. The local coordinates are defined by the maps:

z = fi(ws), zi = fi(0). (7.3)

IThe quantum number (k, j) of the vertex operator is mostly irrelevant for the discussion of the current
and next chapters, and they are omitted. We will distinguish them by a number and reintroduce the
momentum k when necessary. We also omit the overall normalization of the amplitudes.

€ SL(2,C) (7.2)

102



This is also useful to characterize in a simpler way the dependence of off-shell amplitudes
rather than using the metric around the punctures (computations may be more difficult with
a general metric).

The expression of a local operator in the local coordinate system is found by applying
the corresponding change of coordinates (?7):

fo¥(w) = /W) Flw) ¥ (f(w)). (7.4)

The amplitude reads then

3 3 _
Ao = <H fio %(°)> - (H f{(o)himm> <
S2 =1

3
=1 —

(2

Vi (fi (0))> (7.5a)

1 S2

e (H f{(O)himﬁi> (£1(0) — fz(O))h3_h1_h2 X perms X c.c. (7.5b)

The amplitude depends on the local coordinate choice f;, but not on the metric around the
punctures. It is also invariant under SL(2,C): the transformation (7.2) written in terms of
the local coordinates is

i+ b
fi—= ZJ{ Id (76)
from which we get:
= Grvar T praeh a0 )

All together, this implies the invariance of the 3-point amplitude since the factors in the
denominator cancel. When the states are on-shell h; = 0, the dependence in the local
coordinate cancels, showing that the latter is non-physical.

One can ask how Feynman graphs can be constructed in string theory. By definition, an
amplitude is the sum of Feynman graphs contributing at that order in the loop expansion
and for the given number of external legs. The Feynman graphs are themselves built from a
set of Feynman rules. These correspond to the data of the fundamental interactions together
with the definition of a propagator. Since a tree-level cubic interaction is the interaction of
the lowest order, it makes sense to promote it to a fundamental cubic vertex? Vy 3:

"

VO,3(/1/17/V2’7/3) = 7/3 =AO,3(%’%7%))' (78)

Y3

The index 0 reminds that it is a tree-level interaction.

2The notation will become clear later, and should not be confused with the vertex operators.
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7.1.2 4-point function
The tree-level 4-point amplitude is expressed as
3
Ay = / d?z <ch;v;(zi)v4(z4)> : (7.9)
=1 S2
The conformal weights are denoted by h(V;) = h;. For on-shell states, h; = 1: while there is
no dependence on the positions 21, 2o and z3, there are divergences for

24 —> 21, 22, 23, (710)

corresponding to collisions of punctures in the integration process. Moreover, the expression
does not look symmetric: it would me more satisfactory if all the insertions were accompanied
by ghost insertions and if all the puncture locations were treated on an equal footing.

Example 7.1 — Tachyons
Given tachyon states V; = e'*"X  the amplitude reads:

3 3
A0’4 0.8 H |Zl — Zj|2+ki.kj /d224 H |Z4 - Zi|ki‘k4. (711)
i,j=1 i=1
1<j

The integral diverges for z4 — z; if k; - k4 < 0. This can happen for physical values of
the momenta k;.

The idea is to cut out regions around z;, z2 and 23 in the z4-plane and to change the
interpretation of these contributions. First, we consider the case z4 — z3, which corresponds
to cutting a region around z3. Writing z4 = qy4 with y4 € C fixed, the contribution of this
region to the amplitude is denoted by ]-'éj. For simplicity, we take z3 = 0. The contribution
reads:

s d?q , _ _ _
7=/ 8 (Ol Valaw) (7.12)
q

The implicit radial ordering pushes V3 to the left of V; and using the OPE between the b
and c ghosts gives:

.7-'(52 = - / % <cEV1(z1)cEV2(z2)7{ dw w b(w) ?l{u dw w b(w) cEVZ;(qy4)05V3(0)> . (7.13)

|w|=|q|*/? I=lq*/?

The sign arises by anti-commuting ¢ and b. The integration variable ¢ can be removed from
the argument of Vy using the Ly and Ly operators:

2 _
.7-"(52 =— / T—é <cEV1(z1)cEV2(z2) ?(dw'wb(w) fdﬁ)u_)b(w) qLOQLocEVZ;(y4)cEV},(O)> .
)

(7.14)
This expression is more satisfactory because all vertex operators are accompanied with
c-ghost insertions and none of the arguments is integrated over. But, in fact, even better can
be achieved.
Inserting two complete sets of states {¢,} (see Section 7.2) inside this expression gives
(restoring a generic z3-dependence):

F&) = (ceVi(21)cVa(z2)r(0)) (V3 (23)cEVa(ya) ds(0)) / % <¢5qLoqi0b050¢g>, (7.15)
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where the sum over r and s is implicit. The conjugate states ¢¢ are defined by (§S|¢ps) = Ors.
The first two terms are cubic interactions (7.8), and the last term connects both. It is then
tempting to identify the latter with a propagator A

A(g5, 95) = (51 A 1S) = | : 4 (et g obobads), (7.16)
such that:
F§o) = Voa(ceVi(21), ceVa(22), 6r(0)) x A(@5, 85) x Vo,3(ceVa(23), ceVa(ya), ¢4 (0))
3
(7.17)
Y
To make this more precise, change the coordinates as:
g=et9  seRy, 6He][0,2n), (7.18)
such that the integral becomes:
d*q 1.7, * T s(LotLo)if(Lo—Lo) 2
—q 7" =2 ds df e slhoTRo)glfltoS0) = =0, Lo (7.19)
|q| 0 Lo+ Ly ’
This shows that the propagator can be rewritten as
2bobo lfr _
A= “Loi L L0 fo = = bO 810 (7.20)

where LOjE = Lo+ Lo and bg: = by £ by. The sign is added by anticipating the normalization
to be derived later. Its properties will be studied in details in Section 10.2.2.
Taking the basis states ¢, := ¢4 (k) to be eigenstates of Ly and Lo

Lo |$a(k)) = Lo |$a(k)) = (’ﬂ2 +mg) pa(k)) (7.21)

allows to rewrite the last term of .7-"32 as

orLop T Mo (k)
_ c Lo C(_ _ B
Aap(k) = | : (g5 (k)7 bobog () ) = ot mZ (7.22)
The finite-dimensional matrix Mg gives the overlap of states of identical masses:
2 C — C
Map(k) := — (95 (K)| by by 95(—k)) - (7.23)

The propagator depends only on one momentum because (k|k’) ~ §(P)(k — k’). This is
exactly the standard propagator one finds in QFT and this justifies the above claim. The
contribution .7-" (=) 0.4 to the amplitude can be seen as a s-channel Feynman graph obtained by
gluing two cubic fundamental vertices with a propagator. We will see later the interpretation
in terms of Riemann surfaces.
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The same procedure can be followed by considering z4 ~ z3 and z4 ~ 2z;. This leads to
contributions .Fé , and }'é 4 corresponding to ¢- and u-channel Feynman graphs:

" 3
" 73

F = F = (7.24)

72 74
7 Y4

In general, the sum of the three contributions ]-'é 4 %) does not reproduce the full amplitude
Ap.4. Said differently, the regions cut in the z4- plane does not cover it completely. It is
then natural to interpret the remaining part as a fundamental tree-level quartic interaction
denoted by

N Vs
0
Vou = (7.25)
V2 Ya
such that
AO 4 = (S) + ]:éti + ]:éll) + VO 4. (726)

Up to (7.14) it was sufficient to con51der on-shell states, but the insertion of the complete
basis requires to consider also off-shell states since on-shell states do not form a basis of
the Hilbert space. As discussed for the 3-point functions, it is necessary to introduce local
coordinates to describe off-shell states properly.

With the 3- and 4-point functions, we motivated the use of off-shell states and introduced
the two important ideas of local coordinates and amplitude factorization. We also indicated
that amplitudes can be written in a more symmetric way (see also the discussion at the
end of Section 4.1.2). In the rest of this chapter, we give additional ideas on off-shell string
theory.

Remark 7.1 (Riemann surface interpretation) The interpretation of the insertion of
a propagator in terms of Riemann surface consists in gluing two of them thanks to the
plumbing fizture procedure (Section 8.3).

7.2 Off-shell states

An off-shell state is a generic state of the CFT Hilbert space

without any constraint. A basis for the off-shell states is denoted by
H = Span{|¢,)}. (7.28)
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Since there is no constraint on the states, the ghost number of ¢, are arbitrary and denoted
as:
Ny := Ngn(¢r) € Z (7.29)

(the ghost number is restricted for states in the cohomology of @p). The Grassmann parity
of a state ¢, is denoted as |¢,|. When there is no fermions in the matter sector (usually the
case for the bosonic string), only ghosts are odd. Then, the Grassmann parity of a state is
odd (resp. even) if its ghost number is odd (resp. even):

6] = Ngn(ér) mod 2= {(1’ xgigzi e (7.30)
The dual basis {|¢¢)} is defined from the BPZ inner product:
(97 ¢s) = Ors- (7.31)
Denoting the ghost numbers of the dual states by
7S = Ngn(49), (7.32)
the product is non-vanishing if
ng +mn, = {g Zf:fld (7.33)

due to the ghost number anomaly on the sphere. This condition cannot be satisfied if the
dual state ¢¢ is simply taken to be the BPZ conjugate ¢! since the BPZ conjugation does
not change the ghost number. This implies that

(brlds) =0 (7.34)

from the ghost anomaly for every state, except for the closed string states with Ngn = 3 (in
fact, the inner product of these states is also zero as can be seen after investigation). One
can show that

<¢r|¢§> = (_1)|¢T| Ors- (7'35)
Hence, the resolution of the identity can be written in the two equivalent ways
1= lor) (o5l = D> (=1 [ge) (@r| - (7.36)

7.2.1 Open string
The Hilbert space H can be separated according to the ghost zero-modes (Section 22.2.6):

H ~ Ho & coHo, (7.37)
where the relative Hilbert space is defined as:

Ho :=HNkerby = { |¢> eEH | bo |¢> = 0} ~ boH. (738)

Given a state ¥ € coH, it is mapped to another state J € Ho under the isomorphism

) =coly), 1) =bol¥). (7.39)
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The basis states of the open string Hilbert space are decomposed as
¢r=0yr+ It boldrr) =0,  colérr)=0. (7.40)

Each state ¢1, € coyHo can be associated to a state a 1,r € Ho (the arrow is changed to
indicate properly in which subspace the state lies):

|61,r) = colbyr) s |63.r) = bo |D1,r) 5

~ = (7.41)
bolpy,r) =0,  Ngn(t,r) = Nen(éy,r) +1.
7.2.2 Closed string
Following (22.175), the Hilbert space can be decomposed as:
H=Hs®cTHx, (7.42)
where
Hy:=HNkerbT =Ho®ciHo,  Ho:=HNkerby; Nkerby. (7.43)

In fact, we will find that a consistent description of the off-shell amplitudes for the closed
string requires to impose some conditions on the states even at the off-shell level. The
off-shell states will have to satisfy the level-matching condition and to be annihilated by b, :

L3le)=0, b5 |g)=0. (7.44)

This implies that the off-shell states will be elements of %~ Nker L, . This will appear as
consistency conditions on the geometry of the moduli space and by studying the propagator.
In general, we shall work with # and indicate when necessary the restriction to H~ (keeping
the condition ker L implicit to avoid new notations).

The Hilbert space H can be separated according to the ghost zero-modes

H~H BHr @ Hey © Hees (7.45)
with the following definitions:
Hip~Ho,  Hpp~ooHy  Hyg~voHyy  Hyp o~ coloHyy. (7.46)

Accordingly, every basis state can be split as

br =L+ it + Prir + Ot (7.47)
such that _ _
bol¢yir) =boldpr) =0,  bolyr,r) =Coldyr,r) =0, (7.48)
colprir) =bolpryr) =0, colpry,r) = Coldpr,r) =0.
Moreover, the basis can be indexed such that
lu,r) =Coldusr) 1) =coldyr)  |drer) = coColdyy,r) - (7.49)
A dual state ¢¢ is also expanded:
¢$‘ = ¢,T,J,,7' + ¢?LT,7‘ + ¢'([:*,J,,r + ¢’T*T,r (750)
and the components satisfy
Cirlco=(é7, |Co=0, ol co = (954 .| o = 0,
(@510l co = (¢, (@510l o = (T, bo (7.51)

<¢’CN,,7'| bo = (¢’([:‘,L,r| 60 = 07 <¢(1:*T,'r| bO = <¢$1‘,’r| I_)O =0.
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The indexing of the basis is chosen such that:

(@50l = (8500100 (D5 =810 (51,1 = (95| bobo. (7.52)
such that
<¢;,r|¢y,s> = Ozy0rs, (7.53)

where z,y :\LJ/’ ,Nfa ~LT’ TT
Consider the Hilbert space H ™, then a basis state must satisfy

by l¢r) =0 = bolor) =boldy). (7.54)
The expansion (7.47) gives the relation
Prir + Orrr = Dy + it (7.55)
such that
br = 2(¢¢¢,r + ¢¢T,r)- (7'56)

For convenience, the factor of 2 can be omitted (which amounts to rescaling the basis states).

7.3 Off-shell amplitudes

In this section, we provide a guideline of what we need to look for in order to write an
off-shell amplitude. The geometrical tools will be described in the next chapter, and the
construction of off-shell amplitudes in the following one.

7.3.1 Amplitudes from the marked moduli space

In Chapter 4, the scattering amplitudes were written as an integral over the moduli space
M, of the Riemann surface 34. As a consequence, the moduli of M, and the positions of the
vertex operators are not treated on an equal footing. Moreover, the insertions of operators is
not symmetric since some are integrated, and others have factors of c. These problems can
be solved by reinterpreting the scattering amplitudes in a more geometrical way.

The key is to consider the punctures where vertex operators are inserted as part of the
geometry and not as external data added on top of the Riemann surface 3.

Then, the worldsheet with the external states is described as a punctured (or marked)
Riemann surface ¥, ,, which is a Riemann surface ¥, with n punctures (marked points) z;.
The Euler number of such a surface was given in (4.4):

Xgn :=X(Zgn) =2—2g —n. (7.57)

This makes sense since punctures can be interpreted as disks (boundaries). Note that the
punctures are labeled and are thus distinguishable.

Since the marked points are distinguished, marked Riemann surfaces with identical g and
n but with punctures located at different points are seen as different (this statement requires
some care for g = 0 and g = 1 due to the presence of CKV). The corresponding moduli space
is denoted by Mg ,,, and it can be viewed as a fibre bundle with M, as the base and the
puncture positions as the fibre. The dimension of M, is

922,
Mg, = dimg My, = 6g — 6 + 2n, for g=1n2>1, (7.58)
g=0,n2>3.

These cases are equivalent to x4, < 0, that is, when the surfaces have a negative curvature.
The corresponding coordinates are denoted by ¢y, A =1,...,Mg,. Comparing with (3.51)
and (3.93), this corresponds to the situation where 3, ,, has no CKV left unfixed.
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Example 7.2 — 4-punctured sphere 3¢ 4

The positions of the punctures are denoted by z; with ¢ =1,...,4. Since there are three
CKV, the positions of three punctures (say 21, 22 and z3) can be fixed, leaving only one
position which characterizes ¢ 4. Hence, the moduli space has dimension Mg 4 = 2 and
M,4 is parametrized by {z4}.

Example 7.3 — 2-punctured torus X

The positions of the punctures are denoted by z; with ¢ = 1,2. One puncture can be
fixed using the single CKV of the surface, which leaves one position. Together with the
moduli parameter 7 of the torus, this gives My 2 = 4 and the coordinates of M, 5 are

{22, 7}
The g-loop n-point scattering amplitude with external states {#;} can be written as an
. (g:m),
integral over Mg, of some My -form wy" "
Agn (e es V) =/ W (e ). (7.59)
g,n

The integration over My ,, has the correct dimension to reproduce the formulas from Sec-
tion 4.1.

While it is possible to derive this amplitude from the path integral (see the comments
at the end of Section 4.1.2), we will make only use of the properties of CFT on Riemann
surfaces in the next chapter. This provides an alternative point of view on the computation
of scattering amplitudes and how to derive the formulas, which can be helpful when the
manipulation of the path integral is more complicated (for example, with the superstring).

The expression of the form wf,,’jn must 1) provide a measure on the moduli space and 2)
extract a function of the moduli from the states %. It is natural to achieve the second point
by computing a correlation function on the Riemann surfaces 3, ,,. Moreover, Chapters 3
and 4 indicate that the ghosts are part of the definition of the measure. Hence, one can
expect the wf,l’:’n to have the form:

n Mg:"
wir (Vs ) = <ghosts X H%> x/\ dtx. (7.60)
i=1 YgnA=l1

We will motivate an expression in Chapter 10 before checking that it has the correct properties.
The ghost insertions are necessary to saturate the number of zero-modes to obtain a non-
vanishing result. By convention, the ghosts are inserted on the left: while this does not make
difference for on-shell closed states, this will for off-shell states and for the other types of
strings (open and supersymmetric) since the operators can be Grassmann odd.

7.3.2 Local coordinates

The next step is to consider off-shell states #; € H. As motivated previously, one needs to
introduce local coordinates defined by the maps:

There is one local coordinate for each operator, which is inserted at the origin. Local
coordinates on the surfaces can be seen in two different fashions (Figure 7.1). Either as
describing patches on the surface, in which case the maps f; correspond to transition functions.
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(b) Disks delimiting the local coordinate patches.

(c) Complex plane mapped to disks centred around the previous
puncture location.

Figure 7.1: Usage of local coordinates for a Riemann surface.
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Or, one can interpret them by cutting disks centred at the punctures and whose interiors are
mapped to complex planes, and the maps f; tell how to insert the plane inside the disk.

When the amplitude A, ,, is defined in terms of local coordinates, it will depend on
the maps f; and one needs to ensure that this cancels when the A; are on-shell. But, the
choice of the maps f; is arbitrary: selecting a specific set hides that all choices are physically
equivalent and should lead to the same results on-shell. For this reason, the geometry can
be enriched with the local coordinates, in the same way that the puncture locations were
added as a fibre to the moduli space M, to get the marked moduli space M, ,,. Hence,
the fundamental geometrical object is the fibre bundle Py ,, with M, ,, being the base and
the local coordinates the fibre. Since there is an infinite number of functions, the fibre is
infinite-dimensional, and so is the space Py .

Every point of P, ,, corresponds to a genus-g Riemann surface with n punctures together
with a choice of local coordinates around the punctures. The form wf,l’:n is defined in this
bigger space and the integration giving the off-shell amplitude (7.59) is performed over a
Mg, n-dimensional section Sy, C Py, (Figure 7.2):

Ag,n("//l,...,”//n)sgyn=/ w;?,;:n(%,...,%l)|s . (7.62)
S ’ o

g,n

The subscript in the LHS indicates that the amplitudes depend on S, ,, through the choice
of local coordinates. The on-shell independence of A, ,, on the local coordinates translate
into the independence on the choice of the section:

VSym: Agn(Pie. s V)s, . = Agn(Ya,..., %)  (on-shell). (7.63)

The section is taken to be continuous, which means that two neighbouring surfaces of the
moduli space must have close local coordinates.

local coord. Pyn

Mg

Figure 7.2: Section S, ., of the fibre bundle Py ., the latter having M, ,, as a base the local
coordinates as a fibre.

In order to define the amplitude, one needs to find the expression of the Mgy ,,-form wf,l’:n

on Py . It is in fact simpler to define general p-forms wy™ on Py ,, in particular, for proving
general properties about the forms and the amplitudes. Given a manifold, a p-form is an
element of the cotangent space and it can be defined through its contraction with vectors
(tangent space). Since vectors correspond to small variation of the manifold coordinates, it
is necessary to find a parametrization of P, . The geometry of P, , — and of its relevant
subspaces and tangent space — is studied in the next chapter. Then, we will come back on
the construction of the amplitudes in Chapter 9.
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7.4 References

o General references on off-shell string theory include [317, sec. 7, 263, sec. 2, 57, 237].

o Interpretation of local coordinates [237, sec. 5.2].
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Chapter 8

Geometry of moduli spaces and
Riemann surfaces

In this chapter, we describe how to parametrize the moduli space M, , and the local
coordinates which together form the fibre bundle Py ,, introduced in the previous chapter.
Then, we can characterize the tangent space which we will need in the next chapter to write
the p-forms on Py, necessary to write the amplitudes. Finally, we introduce the notion
of plumbing fixture, an operation which glue together punctures located on the same or
different surfaces.

8.1 Parametrization of P,

The first step is to find a parametrization of the Riemann surfaces. As we have seen
(Chapter 7), the dependence of the surface on the punctures can be described by local
coordinates, that is, transition functions. The patch is defined by cutting a disk around each
puncture and the transition functions are defined on the circle given by the intersection of
the disk with the rest of the surface. The number of disks is simply:

#disks = n. (8.1)

It makes sense to look for a similar description of the other moduli (associated to the
genus) by introducing additional coordinate patches. One can imagine that all the dependence
of the moduli and punctures will reside in the transition functions between patches if the
different patches are isomorphic to a surface without any moduli: the 3-punctured sphere
Yo,3. Hence, one can look for a decomposition of the surface by cutting disks such that one
is left with 3-punctured spheres only, and transition functions are defined on the circles at
the intersections of the spheres.

Next, we need to find the number of spheres with 3 holes (or punctures). We start first
with X ,: in this case, it is straightforward to find that there will be n — 2 spheres. Indeed,
for each additional puncture beyond n = 3, an additional sphere is created by cutting a circle.
For g > 1, natural places to split the surface are handles: two circles can be cut for each of
them. By inspection, one finds that it leads to 2 spheres for each handle (one on the right
and one on the left).! This shows that the number of spheres is:

#spheres = 2g — 2 + n. (8.2)

IThe simplest way to find this result is to consider 34,2 and to write one puncture at each side of the
surface (as in Figure 8.2). To generalize further, one can consider a generic n and put all punctures but one
on one side of the surfaces.
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The number of circles corresponds to the number of boundaries divided by two since the
boundaries are glued pairwise: each disk has one boundary and each sphere has 3, which
leads to:
n+3(29—2+n)

2

The idea of the construction is to split the surface into elementary objects (spheres and
disks) such that the full surface is seen as the union of all of them (gluing along circles), and
no information is left in the individual geometries. This parametrization is particularly useful
because there are simple coordinate systems on spheres and disks and these surfaces are easy
to visualize and to work with. For example, they can be easily mapped to the complex plane.

To conclude, a genus-g Riemann surface ¥, with n punctures can be seen as the
collection of:

#circles = =3g9—3+2n. (8.3)

e 2g — 2+ n three-punctured spheres {S,} with coordinates z,
e n disks {D;} with coordinates w; around each puncture
e 39 — 3+ 2n circles {C,} at the intersections of the spheres and disks

Examples for ¥y 4 and X9 5 are given in Figures 8.1 and 8.2.

Figure 8.2: Parametrization of 3 o.
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There are two types of circles: respectively, the ones at the overlap between two spheres,
and between a disk and a 3-sphere:

CA(ab) = S, N Sy, Ci(a) =S, N D;, {Cy} = {Ch,Ci}, (8.4)
where A counts in fact the number of moduli:

A=1,... M¢ M;,, =39 —3+n. (8.5)

g,n?

On the overlap circles, the coordinate systems are related by transitions functions:

on Caep)y: 2o = Fap(2s),

8.6
on Ci(a): Za = fai(wi)‘ ( )

Then, the set of functions {Fys, fa:} completely specifies the Riemann surface ¥, ,, together
with the choice of the local coordinate systems around the punctures. The transition functions
can thus be used to parametrize the moduli space My, and the fibre bundle Py ., but it is
highly redundant because many different functions lead to the same Riemann surface. A
unique characterization of the different spaces is obtained by making identifications up to
symmetries.

In the previous chapter, we have seen that the metric in the local coordinate system is
flat, ds? = |dw|2. This means that two systems differing by a global phase rotation

w; — W; = %, (8.7)

lead to surfaces with local coordinates which cannot be distinguished. Correspondingly, the
two maps f; and f; which relate the local coordinates w; and w; to the coordinate z

z = fi(ws), z = fi(id;) (8.8)
are related as: o
fi(w;) = fi(e ¥ w;). (8.9)

Hence, this motivates to consider the smaller space
Pon = Pon/U()", (8.10)

where the action of each U(1) is defined by the equivalence (8.9). The necessity to consider
this subspace will be strengthen further later, and will correspond to the level-matching
condition. Below, global phase rotations are also interpreted in terms of the plumbing fixture,
see (8.57).

The different spaces which we need are parametrized by the transition functions up to
the following identifications:

o Pyn = {Fap, fai} modulo reparametrizations of z,
o 75g,n = {F,p, fai} modulo reparametrizations of z, and phase rotations of w;

o Mg = {Fap, fai} modulo reparametrizations of z, and of w; keeping the points w; = 0
fixed

o Mgy = {Fup, fai} modulo reparametrizations of z, and w;

At each step, the dimension of the space is reduced because one divides by bigger and bigger
groups. The highest reduction occurs when dividing by the reparametrizations of w; which
form an infinite-dimensional group (phase rotations form a finite-dimensional subgroup of
them).
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For concreteness, it is useful to introduce explicit coordinates z; on Py, (s € N since the
space is infinite-dimensional). The transition functions on the Riemann surface depend on
the x5 which explains why they can be used to parametrize the moduli spaces. Describing
the spheres S, by complex planes with punctures located at 2, 1, 24,2 and 2, 3, the transition
functions on the M ,, circles C(45) = Sa N Sp for all a < b can be taken to be:

on Ch(qp): Za — Zam = aa (8.11)

-
2p — Zb,n

where 2, ,, and 2p, denote the punctures of S, and Sy lying in Cj. Then, the complex
parameters gy with A = 1,..., M , are coordinates on the moduli space My ,. On the
remaining n circles Cj,) = S, N D;, the transition functions can be expanded in series

on Cj(q): Zg — Za,m = W; + Z piNwl, (8.12)
N=1

where 24, is the puncture of S, lying in C;. There is no negative index in the series because
the RHS must vanish for w; = 0 which maps to z, = z,,m (puncture location). The complex
coefficients of the series p; v (¢ = 1,...,n and N € N*) provide coordinates for the fibre.
Thus, coordinates for P, ,, are:

{zs} ={an,pi,n}- (8.13)

As usual, derivatives with respect to x5 are abbreviated by 0s.
When the dependence in the z, must be stressed, the transition functions (8.6) are
denoted by:
Za = Fap(26; Ts), Za = fai(wi; @s). (8.14)

In this coordinate system, each parameter appears in only one transition function and it looks
like one can separate the fibre from the basis. But, this is not an invariant statement as this
would not hold in other coordinate systems. For example, one can rescale the coordinates to
lump all dependence on g, in a single circle.

Since both cases are formally identical, it is convenient to fix the orientation of each C,
and to denote by o, (resp. 7,) the coordinate on the left (resp. right) of the contour, such
that the transition functions reads:

on Cy: Oo = Fo(T; Zs)- (8.15)

Now that we have coordinates on Py, it is possible to construct tangent vectors.

8.2 Tangent space

A tangent vector V; € TP, ,, corresponds to an infinitesimal variation of the coordinates on
the manifold
dzs = €Vs, (8.16)

where € is a small parameter, such that functions of x; vary as:
eVs0sf = f(zs +€V5) — f(xs). (8.17)

The transition functions F,, provide an equivalent (but redundant) set of coordinates for
Py,n- Hence, vectors in TP, ,, can also be obtained by considering small variations of the
transition functions F,:

Fy — F, +€dF,. (8.18)
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Considering an overlap circle C,, a deformation of the transition function
Oo = Fo(T0) (8.19)
for fixed 7, can be interpreted as a change of the coordinate o:
0t = Fo(Ta) + €0Fo(Ta) = 0o + €0Fo(10) = 00 + €6Fo (F; ' (04)). (8.20)
This transformation is generated by a vector field v(®) on the Riemann surface Ygn:
0! =04 +ev'¥(0y), 0@ = §F, 0 FJ1. (8.21)

The situation is symmetrical and one can obviously fix ¢, and vary 7,. The vector field is
regular around the circle C, (to have a well-defined changes of coordinates) but it can have
singularities away from the circle C,,. Hence, the vector field v(® together with the circle
C,, define a vector of Py p:

V@ ~ (0¥ Cy)- (8.22)

This provides a basis of TP, ,. This is sufficient when using the coordinate system (8.13),
but, in more general situations, one needs to consider linear combinations. For example, if
a modulus appears in several transitions functions, then the associated vector field will be
defined on the corresponding circles. A general vector V is described by a vector field v with
support on a subset C of the circles Cy:

Vn~(@C), cc|JCa (8.23)

and the restriction of v on the various circles is written as:
v, = 0@, (8.24)

Note that the vector field v(® and its complex conjugate o(® are independent and are
associated to different tangent vectors. This construction is called the Schiffer variation.
The simplest tangent vectors 0, are given by varying one coordinate of P, ,, while keeping
the other fixed:
Ty — Ts + €0T,. (8.25)

On each circle C,, this gives a deformation of the transition functions

Fo
Con: Fo,— F,+€dF,, 0F, = ?97 0z (8.26)
(no sum over s), such that the change of coordinates reads
0!, = 0o + €0\ (04) s, v (0,) = %(Fgl(aa)). (8.27)

If the z, are given by (8.13), the vectors have support in only one circle.

There is, however, a redundancy in these vectors. Not all of them leads to a motion in Py ,,
because some modifications can be absorbed with a reparametrization of the z,. For example,
if a given v(® can be extended holomorphically outside the circle Cy in the neighbour sphere,
then its effect can be undone by reparametrizing the corresponding coordinate. A similar
discussion holds for the other spaces and relations can be found by restricting the vector
on subspaces. A non-trivial vector (v(¥,C;) of P, becomes trivial on M, , if it can be
cancelled with a reparametrization of w; which leaves the origin fixed.
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8.3 Plumbing fixture

The plumbing fixture is a way to glue together two Riemann surfaces (separating case) or
two parts of the same surface (non-separating case) together, in order to build a surface with
a higher number of holes and punctures. This geometric operation will correspond precisely
to the concept of gluing two Feynman graphs with a propagator in Siegel gauge.

The plumbing fixture depends on a (complex) one-parameter, which leads to a family of
surfaces. This provides the correct number of moduli for the surface obtained after gluing.
This brings to the question of describing the moduli spaces M, ,, in terms of the moduli
spaces with lower genus and number of punctures.

8.3.1 Separating case

(1) (1)
1

Consider two Riemann surfaces ¥4, ,, and X, ,, with local coordinates w; ™, ..., wy, and

w® w®
1, Why
The first step is to cut two disks Dél) and D,(f) of radius |q|l/ ? around a puncture on
each surface, taken to be the ni-th and no-th for definiteness:

DV = {lwM) < 1g"*}, D = {|w?| < |qI'"*}, (8.28)

where ¢ € C is fixed (Figure 8.3).> Then, both surfaces can be glued (indicated by the binary
operation #) together into a new surface

g=a0 + 92,
Zga" = 291’711 #292,"127 {n =y +ng — 9 (829)

by removing the disks D,gl) and D((f) and by identifying the circles (')D((Jl) and 8D¢(12). At the
level of the coordinates, this is achieved by the plumbing fixture operation:

1) (2
wwl) =q,  ldl <1, (8.30)
The restriction on ¢ arises because we have |w7(111) l, |'wa22 | <1 (for a discussion, see [88]). This
case is called separating because cutting the new tube splits the surface in two components.
Locally, the new surface looks like Figure 8.4. It is also convenient to parametrize q as

g=e9  seRy,  6€]0,2n). (8.31)

The parameters s and 6 are interpreted below as moduli of the Riemann surface.
The geometry of the new surface can be viewed in three different ways:

1. both surfaces X, », and ¥, », (with the disks removed) are connected directly at
their boundaries (Figure 8.5a);

2. both surfaces Xy, », and X, ,, (with the disks removed) are connected by a cylinder
of finite size (Figure 8.5b);

3. the surface X, ,, is inserted inside the disk D((Jl), or conversely ¥, . inside D((Iz)
(Figures 8.5¢ and 8.5d).

The first interpretation is the most direct one: the disks are simply removed and the
boundaries are glued together by a small tube of radius |w§1)| < |q|1/ 2. The connection

2The disks D((Ii) should be equal or smaller than the disks ngll) and Dgg.
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1
S

Figure 8.3: Disks around one puncture of the surfaces ¥;; and 3¢ 3. The disks appear as a
cap because it is on top of the surface, which is curved.

Figure 8.4: Integration contour on the circle between the two local coordinates which are
glued together.

between both surfaces can be smoothed (and figures are often drawn in this way — for example
Figure 8.6), but this is not necessary (the smoothing is achieved by cutting disks of size
|q|1/ ? _ ¢ and gluing the boundaries to the disks of radius |q|1/ %).

In the second interpretation, one rescales the local coordinates in order to bring the
radius of the disk to 1 instead of |q|1/ 2. In terms of these new coordinates, the surfaces are
connected by a tube of length s = —In |q| after a Weyl transformation (see [237, sec. 9.3] for
a longer discussion).

The last interpretation is obtained by performing a conformal mapping of the second
case: the region |w,(lll)| < |q|1/ ? is mapped to the region

2 q
) = ||<1|>| > 1, (832

and conversely. The idea is that the disk D((Il) of X4, n, is removed and replaced by the

complement of D§2) in ¥y, n,, i.e. the full surface ¥y, ,, — D(2) is glued inside D(l) While
it is clear geometrically, this statement may look confusing from the coordinate pomt of view
because the local coordinates wS}) and wgi) do not cover completely the Riemann surfaces,
but their relation still encodes information about the complete surface. The reason is that

one can always use transition functions to relate the coordinates on the two surfaces.

Example 8.1
Denote by S, ™ and S, () the spheres sharing a boundary with Dflll) and Dgi), and write
(1) 2

the corresponding coordinates by z * and 2, such that the transition functions are
1 1 1 2 2 2
2¢(z) é )( ( )) ( ) _ fén)Q( ( )) (8.33)
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(a) Direct gluing of circles.

(b) Connection by a long tube.

(c) Insertion of the second surface into the first one. (d) Insertion of the first surface into
the second one.

Figure 8.5: Different representations of the surface ¥; 2 obtained after gluing ¥ ; and 3¢ 3
through the plumbing fixture.

Figure 8.6: Smoothed connection between both surfaces.
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Then the coordinates z, and z; are related by
(1) 1) ¢, (1) (1) q (1) q
Zg = aniy (wnl) = Jan: ( B ) = Jan; (ﬁ) (834)
o) G

such that the new transition function reads

2o =Fu(z), Fa=Ff2o(q-I)of2™ (8.35)

bnz

where I is the inversion (the superscript on the coordinates 2z, and z, has been removed
to indicate that they are now seen as coordinates on the same surface g ,,).

The Riemann surface X ,, is a point of M, ,,. By varying the moduli parameters of 3y, »,
and Xy, n,, one obtains other surfaces in M, ,,. But the number of parameters furnished by
Y4, and Xy, o, does not match the dimension (7.58) of Mg ,:

|\/|g1’"1 + Mgzﬂw =691 — 6+ 2n1 + 692 — 64 2ny = Mg,n —2. (836)

This means that the subspace of Mg ,, obtained by gluing all the possible surfaces in Mg, n,
and Mg, n, is of codimension 2. The missing complex parameter is ¢: in writing the plumbing
fixture, it was taken to be fixed, but it can be varied to generate a 2-parameter family of
Riemann surfaces in Mg ,,, with the moduli of the original surfaces held fixed.

The surface X, ,, is equipped with local coordinates inherited from the original surfaces
X4, ,n: and Xy, .. Hence, the plumbing fixture of points in Py, n, and Py, n, automatically
leads to a point of P, . The fact that the local coordinates are inherited from lower-order
surfaces is called gluing compatibility. It is also not necessary to add parameters to describe
the fibre direction.

8.3.2 Non-separating case

In the previous section, the plumbing fixture was used to glue punctures on two different
surfaces. In fact, one can also glue two punctures on the same surface to get a new surface
with an additional handle:

g=g1+1,

8.37
n=n; —2, ( )

Eg,n = #Zgh’ﬂl’ {

defining # as a unary operator. This gluing is called non-separating because there is a single
surface before the identification of the disks.
In terms of the local coordinates, the gluing relation reads

w® 1w£L11) =q, (8.38)

niy—

where we consider the last two punctures for definiteness.
The dimensions of both moduli spaces are related by

Mg, ns = Mg —2. (8.39)

Again, the two missing parameters are provided by varying g and we obtain a M, ,,-dimensional
subspace of Mg .

Example 8.2
Here are some examples of surfaces obtained by gluing:
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o Yo4 = Xo3#0,3 o Y11 =#X03
o Yo5 = Xo,37#%0,3H# 20,3, 20,37 20,4 o Y10 =#X0,4,21,1%#>0,3

Note that the moduli on the LHS and RHS are fixed (we will see later that not all
surfaces can be obtained by gluing).

8.3.3 Decomposition of moduli spaces and degeneration limit

We have seen that the separating and non-separating plumbing fixtures yield a family of
surfaces in Mg ,, described in terms of lower-dimensional moduli spaces. The question is
whether all points in M, ,, can be obtained in this way by looking at all the possible gluing
(varying g1, n1, g2 and n2). It turns out that this is not possible, which is at the core of the
difficulties to construct a string field theory.

Which surfaces are obtained from this construction? In order to interpret the regions
of Mgy, covered by the plumbing fixture, the parametrization (8.31) is the most useful.
Previously, we explained that s gives the size of the tube connecting the two surfaces. Since
the latter is like a sphere with two punctures, it corresponds to a cylinder (interpreted as an
intermediate closed string propagating). The angle 6 in (8.31) is the twist of the cylinder
connecting both components. This amounts to start with § = 0, then to cut the cylinder, to
twist it by an angle 6 and to glue again.

The limit s — oo (|g| — 0) is called the degeneration limit: the degenerate surface
Y4.n reduces to Xy, ,, and X4, ,, connected by a very long tube attached to two punctures
(separating case), or to ¥g_1 n42 With a very long handle (non-separating case). So it means
that the family of surfaces described by the plumbing fixture are “close” to degeneration.
Another characterization (for the separating case) is that the punctures on ¥, ,, are closer
(according to some distance, possibly after a conformal transformation) to each other than
to the punctures on X, »,.

Conversely, there are surfaces which cannot be described in this way: the plumbing
fixture does not cover all the possible values of the moduli. For a given M, ,, we denote
the surfaces which cannot be obtained by the plumbing fixture by V, . This space does not
contain any surface arbitrarily close to degeneration (i.e. with long handles or tubes). In
terms of punctures, it also means that there is no conformal frame where the punctures split
in two sets.

In the previous subsection, we considered two specific punctures, but any other punctures
could be chosen. Hence, there are many ways to split X, ,, in two surfaces ¥y, », and Xy, n,
(with fixed g1, g2, n1 and ny): every partition of the punctures and holes in two sets lead to
different degeneration limits (because they are associated to different moduli — Figure 8.7).
Since each puncture is described by a modulus, choosing different punctures for gluing give
different set of moduli for 3, ,, such that each possibility covers a different subspace of Mg p,.
The part of the moduli space M, ,, covered by the plumbing fixture of all surfaces X, ,
and Xg, », (with fixed g1, g2, n1, n2) is denoted by My, ., # Mg, n,:

Mglsnl #Mgz,nz - Mg,na (840)

where the operation # includes the plumbing fixture for all values of ¢ and all pairs of
punctures. Similarly, the part covered by the non-separating plumbing fixture is written as
#Mglﬂh:

#Mgin C Mg (8.41)

Importantly, the regions covered by the plumbing fixture depend on the choice of the
local coordinates because (8.30) is written in terms of local coordinates. The subspaces
Mg, ni # Mg, n, and #M,, . are not necessarily connected (in the topological sense).
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(a) Degeneration 12 — 34 (b) Degeneration 13 — 24

(c) Degeneration 14 — 23

Figure 8.7: Permutations of punctures while gluing two spheres: they correspond to different
(disconnected) parts of Mg 4.

The moduli space M, ,, cannot be completely covered by the plumbing fixture of lower-
dimensional surfaces. We define the propagator and fundamental vertex regions F, ,, and
Vy,n as the subspaces which can and cannot be described by the plumbing fixture:

Fyn = H#My_1nr2 U ( U Mgl,m#MgQ,M), (8.42a)
ni+nzs=n+2
g1+g92=9
Vo = Mgn = Fgn, (8.42b)

In the RHS, it is not necessary to consider multiple non-separating plumbing fixtures for
the first term because #My_2 n44 C Mg_1 nt2, etc. For the same reason, it is sufficient to
consider a single separating plumbing fixture. Note that V, , and F, , are in general not
connected subspaces. A simple illustration is given in Figure 8.8. The actual decomposition
of My 4 is given in Figure 8.9. Importantly, F, , and Vg, depend on the choice of the local
coordinates for all V, ,,» appearing in the RHS.

It is also useful to define the subspaces 7,5~ and VIF! of M, , which can and cannot be
described with the separating plumbing fixture only:

Fordi= U Mum#Mgn, (8.43a)
ni+ns=n+2
1914-292=g
Vo 1= Mg — Fyit. (8.43b)

1PR (1PI) stands for 1-particle (ir)reducible, a terminology which will become clear later.
Note the relation:

Vyl}:ll = Vg,n U (U #Mg—g',n-i-g’) . (8.44)
g/

The two plumbing fixtures behave as follow:

 separating: increases both n and g (if both surfaces have a non-vanishing g);
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Figure 8.8: Schematic illustration of the covering of Mg, from the plumbing fixture of
lower-dimensional spaces. The fundamental region V, ,, (usually disconnected) is not covered
by the plumbing fixture.

>

EERY
2

Figure 8.9: In white are the subspaces of the moduli space My 4 covered by the plumbing
fixture. The three different regions correspond to the three different ways to pair the
punctures (see Figure 8.7). In grey is the fundamental vertex region V4.
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e non-separating plumbing: increases g but decreases n.

The construction is obviously recursive: starting from the lowest-dimensional moduli space,
which is My 3 (no moduli), one has:

Vo,3 = Mo,3, Fo,3=0. (8.45)
Next, the subspace of M 4 obtained from the plumbing fixture is:
Fo,4 = V0,37 V0,3, (8.46)
and V) 4 is characterized as the remaining region. Then, one has:

Fo,5 = Moa#FMop 3
= Fo,47 V0,3 + Vo,47# V0,3 = Vo,3%V0,3# V0,3 + Vo,4# V0,3,

and V5 is what remains of My 5. The pattern continues for g = 0. The same story holds
for g > 1: the first such space is

(8.47)

Fi11 = #Vo3, (8.48)

and Vi3 = My1 — Fi1,1. The gluing of a 3-punctured sphere and the addition of a handle
are the two most elementary operations.

To keep track of which moduli spaces can contribute, it is useful to find a function of
Y4,n, called the index, which increases by 1 for each of the two elementary operations:

T(Zghm #20,3) = T(Zgl,nl) +1, "'(#291,711) = r(zgl,m) +1L (8.49)
An appropriate function is
r(Xgn) =39+n—2€N". (8.50)
which is normalized such that:
r(Zo,3) = 1. (8.51)

For a generic separating plumbing fixture, we find:

T(291,ﬂ1 #2927’”2) = 7‘(291 7”1) + 7‘(2927712). (852)

Since the index increases, surfaces with a given r can be obtained by considering all the
gluings of surfaces with 7’ < r.

8.3.4 Stubs

To conclude this chapter, we introduce the concept of stubs. Previously in (8.31), the range
of the parameter s was the complete line of positive numbers, s € R;. This means that
tubes of all lengths were considered to glue surfaces. But, we could also introduce a minimal
length sy > 0, called the stub parameter, for the tube. In this case, the plumbing fixture
parameter is generalized to:

qg=eH s € [s0,00), 6 € [0,27), s0 > 0. (8.53)
What is the effect on the subspaces Fy (so) and Vy »(s0)? Obviously, less surfaces can be
described by the plumbing fixture if sg > 0 than if so = 0, since the plumbing fixture cannot
describe anymore surfaces which contain a tube of length less than sy. Equivalently, the
values of the moduli described by the plumbing fixture is more restricted when sy > 0. More
generally, one has:

S0 < 8¢ Fon(80) C Fgn(s0) Vg.n(80) C Vg n(sh)- (8.54)
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Vo,4(s0) Vou

Figure 8.10: In light grey is the subspace covered by the Vy 4(so) as in Figure 8.9. In dark
grey is the difference 6V 4 = Vo.4(so + 8s0) — Vo,4(s0) with dso > 0.

This is illustrated on Figure 8.10. Even if s¢ is very large, Vg » still does not include surfaces
arbitrarily close to degeneracy. In general, we omit the dependence in sy except when it is
necessary.

To interpret the stub parameter, consider two local coordinates w; and ws and rescale
them by A € C with Re A > 0:

wp, = )\’lf)l, Wo = )\’lIJQ. (8.55)
Then, the plumbing fixture (8.30) becomes
Wy = e~ 517 (8.56)

with N
§=s+2In|\|, 5=6+iln§. (8.57)

If s € R4, the corresponding range of § is
§ € [s0,00), S0 :=2In|Al. (8.58)

This shows that rescaling the local coordinates by a constant parameter is equivalent to
change the stub parameter.

Note also how performing a global phase rotation in (8.57) is equivalent to shift the twist
parameter. Working in P, , forces to take X € Ry.

8.4 Summary

In this chapter, we have explained how to parametrize the fibre bundle P, ., that is,
appropriate coordinates for the moduli space and the local coordinate systems. This was
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realized by introducing different coordinate patches and encoding all the informations of
Py, in the transition functions. Then, this description lead to a simple description of the
tangent vectors through the Schiffer variation.

In the next chapter, we will continue the program by building the p-forms required to
describe off-shell amplitudes.

8.5 References

e Plumbing fixture [237, sec. 9.3].
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Chapter 9

Off-shell amplitudes

While the previous chapter was purely geometrical, this one makes contact with string theory
through the worldsheet CFT. We continue the description of P, ,, by constructing p-forms.
The reason why we need to consider the CFT is that ghosts are necessary to build the p-forms:
this can be understood from Chapter 3, where we found that the ghosts must be interpreted
as part of the measure on the moduli space. Then, we build the off-shell amplitudes and
discuss some properties.

9.1 Cotangent spaces and amplitudes

In this section, we construct the p-forms on P, ,, which are needed for the amplitudes. We
first motivate the expressions from general ideas, and check later that they have the correct
properties.

9.1.1 Construction of forms

A pform W™ € AP T*P, ,, is a multilinear antisymmetric map from A? T'P,.,, to a function
of the moduli parameters. The superscript on the form is omitted when there is no ambiguity
about the space considered. The components w;, ...;, of the p-form are defined by inserting p
basis vectors s, ,...,0s,

Wiy wviy i= Wp(0sy s .-, 0s,), (9.1)
where 9s = 6%5 and zs are the coordinates (8.13). It is antisymmetric in any pair of two
indices

Witigeiy = TWigiy iy (9.2)

and multilinearity implies that
wpy(VD, ., VP) =, (Via,,, ..., VP, ) = wiy.q, VA - VP, (9.3)

given vectors V(@) = vi9a,.

The p-forms which are needed to define off-shell amplitudes depend on the external states
¥ (i = 1,...,n) inserted at the punctures z;. They are maps from A\’ TP, , x H" to a
function on Py . The dependence on the states is denoted equivalently as

Wp(Ya, -, V) 1= wp(®i%4). (9.4)

The simplest way to get a function on Py ,, from the states 7; is to compute a CFT correlation
function of the operators inserted at the points z; = f;(0) on the surface ¥, , described by
the point in Mg p,.
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The 0-form is just a function and is defined by:
wwﬂﬁﬁM%<Hﬁo%®>- 95)
i=1 Syon

For simplicity, the dependence in the local coordinates f; is kept implicit in the rest of the
chapter.

A natural approach for constructing p-forms is to build them from elementary 1-forms
and to use ghosts to enforce the antisymmetry. Remembering the Beltrami differentials
found in Chapter 3, the contour integral of ghosts b(z) weighted by some vector field is a
good starting point. In the current language, it is defined by its contraction with a vector

= (v,C) € TP, ,, defined in (8.23):

BV) = § SEbw(e) + § SE 600, (9.6)

where b(z) and b(Z) are the b-ghost components, and v is the vector field on ¥, ,, defining V.
The contours run anti-clockwise. If the contour C includes several circles (C = U,Cy), B(V)
is defined as the sum of the contour integral on each circle:

d
= Zf i b(2)v(z) + c.c. (9.7
C 27i
e @
It is also useful to define another object built from the energy—momentum tensor:
dz dz
T =¢ —T T(z .

V)= § ZTEE+ § T2 TEE) 99)
where T and T are the components of the energy-momentum tensor. It is defined such that
T(V) ={@s,B(V)}. (9.9)

Considering the coordinate system (8.13), the Beltrami form can be decomposed as:

B=B.dz,, B, :=B(), (9.10a)
B, _Z]{ d”"‘ ) +Z}{ i‘;‘i“ G %(F;l(aa)), (9.10Db)

where the contour orientations are defined by having the o, coordinate system on the left.

We define the p-form contracted with a set of vectors VD, ..., V(®) by
wp (V.. V) (14, .., #p) o= (2mi) Mo < (v)...B(V®) ﬁ "V> (9.11)
=1 Sym
and the corresponding p-form reads
Wp = Wp,s; .5, dTs; A -+ Adg, (9.12a)
= (2ni) Mo .n <ledxsl A+ A By dzs, ﬁ 7/> . (9.12b)
i=1 )

g,mn

In this expression, the form contains an infinite numbers of components wy, s, ...s, since there
is an infinite number of coordinates. Note that the normalization is independent of p.
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In practice, one is not interested in P, ,, but rather in a subspace of it. Given a
g-dimensional subspace S of P, ,, parametrized by g real coordinates ¢4, ..., t4

Ts = Zs(t1,...,tq), (9.13)

the restriction of a p-form to this subspace is obtained by the chain rule:

c ax (9.’133 n
Vo<q: wyls=2m)Mon (B, —2dt,, A---AB, —2dt,. |[%),
g,n

Vp>gq: wpls=0.
We will often write the expression directly in terms of the coordinates of S and abbreviate
the notation as:
oz,

Br :za_tT

B,. (9.15)

9.1.2 Amplitudes and surface states

It is now possible to write the amplitude more explicitly. An on-shell amplitude is defined
as an integral over M, ,. Off-shell, one needs to consider local coordinates around each
puncture, that is, a point of the fibre for each point of the base M, . This defines a
M, ,-dimensional section Sy ,, of Py, (Figure 7.2). The g-loop n-point off-shell amplitude of
the states 71,..., 7, reads:

Ag,n(’y/la ceey %L)Sg,n = / wf\]/i:‘n (7/17 cey ’Vn)|3 ) (9163’)
S ’ o

g,n

n oz
Wit (s )l g, = (2m)” Mg.n </\B T thHfzo“// )> (9.16b)

Yg,n

where the choice of the f; is dictated by the section Sy . From now on, we stop to write the
restriction of the form to the section. We also restrict to the cases where x4, =2—2g—n < 0.
The complete (perturbative) n-point amplitude is the sum of contributions from all loops:

AN, V) =Y Agn(Pas - V). (9.17)

920

More generally, we define the integral over a section R, which projection on the base is
a subspace of M, ,, (and not the full space as for the amplitude) as:

Rym(Hiseres V) ;=/ W (T ), (9.18)
R gom

g,n

For simplicity, we will sometimes use the same notation for the section of P, , and its
projection on the base Mg ,,. For this reason, the reader should assume that some choice of
local coordinates around the punctures is made except otherwise stated.

Given sections Ry, the sum over all genus contribution is written formally as

Rn=Y Rgnm, (9.19)
920
such that
Ru(Fir- s Ya) = 3 Ry (P Z/ (Hhreor V). 9.20)
920 g>0
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A surface state is defined as a n-fold bra which reproduces the expression of a given
function when contracted with n states A;. The surface (£9"|, form (w9"|, section (Rg »|
and amplitude (A9"| n-fold states are defined by the following expressions:

<Eg,n| le ce Bsp |®z%> = wsln-sp(%; ceey %7,), (9.21&)
(W™ ®i i) v=wp(P4,. -, Vn), (9.21b)
(Agn| ®i 1i) = Ag (N1, -, Y0)- (9.21c¢)

The last relation is generalized to any section Ry ,:
(Rgnl ®i i) :=Rgn(P1,. -+, 70)- (9.21d)

The reason for introducing these objects is that the form (9.12) is a linear map from H®" to a
form on My ,, —see (9.4). Thus, there is always a state (¥, ,,| such that its BPZ product with
the states reproduces the form. In particular, the state (¥, | contains all the information
about the local coordinates and the moduli (the dependence is kept implicit). The definition
of the other states follow similarly. These states are defined as bras, but they can be mapped
to kets.

One finds the obvious relations:

(W™ =(Bgn| Bs,dz® - -- By, dz®,  (Agna| = / {wp™|. (9:22)
M

g,n

The surface states don’t contain information about the matter CFT: they collect the
universal data (like local coordinates) needed to describe amplitudes. Hence, it is an important
step in the description of off-shell string theory to characterize this data. However, note that
the relation between a surface state and the corresponding form does depend on the CFT.

Example 9.1 — On-shell amplitude Ag 4
The transition functions are given by (see Figure 8.1):

Ci:wy =21 —y1, Cs: w3 = 29 — ys, Cs: 21 = 29, (9.23)
Cy :wo =21 — Yo, Cy:wy =20 —Ys.

Three of the parameters (y1, y2 and ys3) are fixed while the single complex modulus
of Mgy 4 is taken to be y4. Since we are interested in the on-shell amplitude, it is not
necessary to introduce local coordinates and the associated parameters.

A variation of the modulus

Ys —> Ya+0ys, Yo — Ya+ 0Ya (9.24)

is equivalent to a change in the transition function of C4. This translates in turn into a
transformation of zs:
Zé = 29 + 0y4, Eé = 29 + 0Ys. (9.25)

Then, the tangent vector V' = 0,, is associated to the vector field
v=1, v=0, (9.26)

with support on Cy4. For V = 0y,, one finds

<
|
—_

v=0, (9.27)
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The Beltrami 1-form for the unit vectors are

BO.) = § dnbe)(+D),  BOu) = § aab@EE), 02

Cy

with both contours running anti-clockwise.
The components of the 2-form reads

4

wr(Byy,By,) = —— <B(8y4)B(8y4) H%>

2mi
=1

4
1 _
= — dzo b dzs b(Z I I% .
2mi <fé7‘l . (22) fc‘* . (zz) =1 >204

For on-shell states ¥; = ccV;(y;,¥;), this becomes

w2<ay4,ag4)=2%<Hcavi(yi,gi) ¢ anbe) § d22B(zz)a(g4)c<y4>v4<y4,g4)>.

Yo,4

The first three operators could be moved to the left because they are not encircled by
the integration contour. Note the difference with the example discussed in Section 7.1.2:
here, the contour encircles z3, while it was encircling y3 for the s-channel.

Using the OPE

1
% dZ2 b(Zz)C(y4) N‘% dZQ (929)
Cy 4 22 —Ya
to simplify the product of b and ¢ gives the amplitude
3
A :L/d Adgs { T eeVi(w:) Valya) (9.30)
0,4 omi Ya y4‘1 11442- .
= 0,4

This is the standard formula for the 4-point function derived from the Polyakov path
integral.

9.2 Properties of forms

In this section, we check that the form (9.12) has the correct properties:
o antisymmetry under exchange of two vectors;

« given a trivial vector of (a subspace of) P, (Section 8.1), its contraction with the
form vanishes: w,(V1),..., V(®)) =0 if any of the V(?) generates:

— reparametrizations of z, for V() ¢ TPy n,
— rotation w; — (1 + iag)w; for V) € TP, .,

— reparametrizations of w; keeping w; = 0 if the states are on-shell for V() € TM g,ns
o BRST identity, which is necessary to prove several properties of the amplitudes.

The first property is obvious. Indeed, the form is correctly antisymmetric under the
exchange of two vectors V() and V) due to the ghost insertions.
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9.2.1 Vanishing of forms with trivial vectors

Reparametrization of z, Consider the sphere S, with coordinate z,, and denote by C1,
Cs and (5 the three boundaries. Then, a reparametrization

2a — 2q + &(2a) (9.31)

is generated by a vector field ¢(z) which is regular on S,. This transformation modifies
the transition functions on the three circles and is thus associated to a tangent vector V'
described by a vector field v with support on the three circles:

Ci: v =g, (9.32)
The Beltrami form then reads
3
B(V)=Y ]{ dza b(2a)$(2a) + c.c. (9.33)
i=17Ci

where the orientations of the contours are such that S, is on the left. Since the vector field
¢ is regular in S, two of the contours can be deformed until they merge together. The
resulting orientation is opposite to the one of the last contour (Figure 9.1). As a consequence,
both cancel and the integral vanishes.

Figure 9.1: Deformation of the contour of integration defining the Beltrami form for a
reparametrization of z,. The figure is drawn for two circles at a hole, but the proof is
identical for other types of circles.

Rotation of w; Consider an infinitesimal phase rotation of the local coordinate w; in the
disk D;:
w; — (1 + iai)fwi, w; — (1 — iai)'wi, (934)

with a; € R. The tangent vector is defined by the circle C; and the vector field by
V= iwi, U= —ii)i. (935)

The Beltrami form for this vector is

B(V) =i fi dww; ) — ]{ dw, @, b(@:), (9.36)

i

where D; is kept to the left.
In the p-form (9.11), the ith operator ¥; is inserted in D; and encircled by C;. Because
there is no other operator inside D;, the contribution of this disk to the form is

i i
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The state—operator correspondence allows to rewrite this result as
i(bo — bo) | %) , (9.38)

since the contour integral picks the zero-modes of b and of b. Requiring that the form vanishes
implies the ghost counter-part of the level-matching condition:

by | %) = 0. (9-39)
Hence, consistency of off-shell amplitudes imply that
Y eHT, (9.40)

where ™ is defined in (7.43).

Reparametrization of w; A reparametrization of the local coordinate w; keeping the
origin of D; fixed reads:

w; — f(w),  f(0)=0. (9.41)
The function can be expanded in series:
fw) = pmw]tt. (9.42)
m>0

Because the transformation is holomorphic, it can be extended on C;. Each parameter p,,
provides a coordinate of P, ,, and whose deformation corresponds to a vector field:
Vm =w™, T, =0. (9.43)

7

The corresponding Beltrami differential is

B(8,,) = 7{ dw; b(w;)w" . (9.44)

i

Since only the operator 7; is inserted in the disk, the state—operator correspondence gives
bm | 7;). Requiring that the form vanishes on M, ,, for all m and also for the anti-holomorphic
vectors gives the conditions:

Ym>0: b |%) =0, b |%) =0. (9.45)

This holds automatically for on-shell states #; = ccV;.

9.2.2 BRST identity
The BRST identity for the p-form (9.12) reads

“Wp ( >Ry e %) = (=1)Pdwp-1(®7%), (9.46)

using the notation (9.4). The BRST operator acting on the ith Hilbert space is written as

D=1, 19Qs® 1, (9-47)
and acts as

Qu¥ilz,5) = 2%1 ?{ dw j (w) ¥i(2, 5) + c.c. (9.48)
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More explicitly, the LHS corresponds to

wp( Do QW 8 %) = wp(@e4, Va0 Ya) + (<) (4, Qe s, o, V) 0.9

+--+ (_1)|%|+“.+|7/n71|wp(7/17 7/2a e )QB%L)‘

We give just an hint of this identity, the complete proof can be found in [317, pp. 85-89, 263,
sec. 2.5].

The contour of the BRST current around each puncture can be deformed, picking
singularities due to the presence of the Beltrami forms. Using (9.9), we find that anti-
commuting the BRST charge with the Beltrami form B, leads to an insertion of

Ts = {@s, Bs}. (9.50)

The energy—momentum tensor generates changes of coordinates. Hence, Ts = T, is precisely
the generator associated to an infinitesimal change of the coordinate x5 on P, ,,. The latter
is given by the vector d;. For this reason, one can write:

dzs {@pB,Bs} =dzs Ts = dzs 0 = d, (9.51)

where d is the exterior derivative on Py ,,. The minus signs arise if the states ¥; are Grassmann
odd.

9.3 Properties of amplitudes

In order for the p-form (9.12) to be non-vanishing, its total ghost number should match the
ghost number anomaly:

Nen (wp(#4,---, 7)) = Y _ Nen(¥#) —p = 6 — 6, (9.52)
i=1
using Ngn(B) = —1. For an amplitude, one has p = My ,, = 6g — 6 + 2n and thus:

Ngn(wm,,) =6—6g = Y Ng(%)=2n. (9.53)
=1

This condition holds automatically for on-shell states since Ngn(ccV;) = 2.

9.3.1 Restriction to 739,”

The goal of this section is to explain why amplitudes must be described in terms of a section
of ’ﬁg,n (8.10) instead of Py . This means that one should identify local coordinates differing
by a global phase rotation.

The off-shell amplitudes (9.16) are multi-valued on Py ,,. Indeed, the amplitude depends
on the local coordinates' and changes by a factor under a global phase rotation of any local
coordinate w; — e!*w;. However, such a global rotation leaves the surface unchanged, since
the flat metric |dwi|2 is invariant. This means that the same surface leads to different values
for the amplitude. To prevent this multi-valuedness of the amplitudes, it is necessary to
identify local coordinates differing by a constant phase.

A second way to obtain this condition is to require that the section S, is globally
defined: every point of the section should correspond to a single point of the moduli space

IThe current argument does not apply for on-shell amplitudes.
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My . However, there is a topological obstruction which prevents finding a global section in
Pgy.n in general. One hint [73, sec. 2, 88, sec. 3] is to exhibit a nowhere vanishing 1-form if
Sy.n is globally defined: this leads to a contradiction since such a 1-form does not generally
exist (see for example [76, sec. 6.3.2, ch. 7]). Then, consider a closed curve in the moduli
space (such curves exist since M, ,, is compact). Starting at a given point ¥ of the curve,
one finds that the local coordinates typically change by a global phase when coming back
to the point ¥ (Figure 9.2), since this describes the same surface and there is no reason to
expect the phase to be invariant. Up to this identification, it is possible to find a global
section. The latter corresponds to a section of Py ,.

@

(5]

(&%)

¥ ¥
(a) Closed curve in Mg . (b) Change in the phase of w;.

Figure 9.2: Schematic plot of the change in the phase of the local coordinate w; as one follows
a closed curve in M, 5. If the original phase at ¥ is o and if the phase varies continuously
along the path, then a; # o when returning back to X by continuity.

Remark 9.1 (Degeneracy of the antibracket) It is possible to define a B V structure
on Riemann surfaces [281, 282]. The antibracket is degenerate in Py but not in Py, [282].

Global phase rotations of the local coordinates are generated by L, . Hence, identifying
the local coordinates w; — €'*w; amounts to require that the amplitude is invariant under
L, . This is equivalent to imposing the level-matching condition

L3 %) =0 (9.54)

on the off-shell states. This condition was interpreted in Section 4.2.2 as a gauge-fixing
condition for translations along the S! of the string. This shows, in agreement with earlier
comments, that the level-matching condition should also be imposed off-shell because no
gauge symmetry is introduced for the corresponding transformation.

If the generator L, is trivial, this means that the ghost associated to the corresponding
tangent vector must be decoupled. According to Section 9.2.1, this corresponds to the
constraint:

by |7:) = 0. (9.55)

This can be interpreted as a gauge fixing condition (Section 13.5), which could in principle
be relaxed. However, the decoupling of physical states (equivalent to gauge invariance in
SFT) happens only after integrating over the moduli space. This requires having a globally
defined section.

As a consequence, off-shell states are elements of the semi-relative Hilbert space

Vi € H™ NkerLy, (9.56)

and the amplitudes are defined by integrating the form wy, , over a section S, ,, C Py
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Computation — Equation (9.54)
The operator associated to the state through |A;) = A4;(0) |0) transforms as

#i(0) — ()" () % (0) (9.57)

which translates into . ~
| %) — elei(Lo=Lo) |57y (9.58)

for the state, using the fact that the vacuum is invariant under Lo and Lo. Then,
requiring the invariance of the state leads to (9.54).

9.3.2 Consequences of the BRST identity

Two important properties of the on-shell amplitudes can be deduced from the BRST identity
(9.46): the independence of physical results on the choice of local coordinates and the

decoupling of pure gauge states.
Given BRST closed states, the LHS of (9.46) vanishes identically

Vi: Qpl%)=0 = dwp_1(%,...,%)=0. (9.59)

Using this result, one can compare the on-shell amplitudes computed for two different sections

S and S':
/wMg,n —/ WM, =/ WM, —1 =/ dwwm, -1 =0, (9.60)
s / ot T

using Stokes’ theorem and where 7 is the surface delimited by the two sections (Figure 9.3).
This implies that on-shell amplitudes do not depend on the section, and thus on the local
coordinates. In obtaining the result, one needs to assume that the vertical segments do not
contribute. The latter correspond to boundary contributions of the moduli space. In general,
many statements hold up to this condition, which we will not comment more in this book.

Py?”

Mg

Figure 9.3: Two sections S and &’ of P, ,, delimiting a surface 7.

Next, we consider a pure gauge state together with BRST closed states:
|71) =@zslA),  Qp|%)=0. (9.61)
The BRST identity (9.46) reads:
wMm, . (@BA, ¥2,..., %) =dwwm, . —1(A, Y2,...,7%), (9.62)
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which gives the amplitude

/wMg,n<QBA,“//2,...,”Vn)=/deg,n_l(A,%,...%):/ wnty 1 (A Vo V)
S S oS

(9.63)
where the last equality follows from Stokes’ theorem. Assuming again that there is no
boundary contribution, this vanishes:

/ WM, (@BA, 72,...,73) = 0. (9.64)
S

This implies that pure gauge states decouple from the physical states.

9.4 References

« Definition of the forms [88, 90, 263, 317].

o Global phase rotation of local coordinates [73, sec. 2, 88, sec. 3, 213, 317, p. 54].
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Chapter 10

Amplitude factorization and
Feynman diagrams

In the previous chapter, we built the off-shell amplitudes by integrating forms on sections
of Py . Studying their factorizations leads to rewrite them in terms of Feynman diagrams,
which allows to identify the fundamental interactions vertices. We will then be able to write
the SFT action in the next chapter.

10.1 Amplitude factorization

We have seen how to write off-shell amplitudes. The next step is to rewrite them as a sum of
Feynman diagrams through factorization of amplitudes.

Factorization consists in writing a g-loop m-point amplitude in terms of lower-order
amplitudes in both g and n connected by propagators. Since an amplitude corresponds to a
sum over all possible processes, which corresponds to integrating over the moduli space, it
is natural to associate Feynman diagrams to different subspaces of the moduli space. One
can expect that the plumbing fixture (Section 8.3) is the appropriate translation of the
factorization at the level of Riemann surfaces. We will assume that it is the case and check
that it is correct a posteriori.

To proceed, we consider the contribution to the amplitude A, ,, of the family of surfaces
obtained by the plumbing fixture of two surfaces (separating case) or a surface with itself
(non-separating case).

10.1.1 Separating case

In this section, we consider the separating plumbing fixture where part of the moduli space

Mg, is covered by Mg, n, #Mg, n, With g = g1 + g2 and n = n; + ny — 2 (Section 8.3.1).

The local coordinates read wgl) and w'? for i = 1,...,n; and j =1,...,n2. By convention,
the last coordinate of each set is used for the plumbing fixture:

w,(lll)w,(fz) =gq. (10.1)

The g-loop n-point amplitude with external states {”//1(1), ey ”Vn(ll)_l, 7/1(2), ceey "I/n(f)_l} is

denoted as:
, 1 1 2 2
Ay = /S Wt (R, 0. (10.2)

g,n
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We need to study the form wMg on Mg, n, #Mg, n,, which means to rewrite it in terms
of the data from Mg, », and from My, ,,,. This corresponds to the degeneration limit where
the two groups of punctures denoted by "//i(l) and ”f/j(z) i=1,...,m—1,7=1,...,n2—1)
together with ¢g; and g2 holes move apart from each other (Figure 10.1).

Figure 10.1: Degeneration limit of 3, ,, where the punctures ”//i(l) and “//j(2) move apart from
each other.

Since ¢ is a coordinate of Py, its variation is associated with a tangent vector and a
Beltrami 1-form. The latter has to be inserted inside wf,l’:n. A change ¢ — q + dq translates

into a change of coordinate
"y _ (1) £L :
Wy, = —= dq, (10.3)

where w( ) is kept fixed (obviously, this choice is conventional as explained in Section 8.2).
Thus, the vector field and the Beltrami form are

W )
Vg = le , B, = 5}{0 dw,(lll) b(wﬁlll))wgl). (10.4)
q

Computation — Equation (10.3)
Starting from (10.1), vary ¢ — ¢ + dq while keeping w&ﬁ fixed:

wii i) = q+dq

(1)
’(1) (1)
= q (q + 6Q) =Wn, + (1) dq.

The second line follows by replacing wﬁm) using (10.1).

The My ,-form for the moduli described by the plumbing fixture can be expressed as:

My (V) 05,00,V P n2) (10.5)
Mgy nq ni—1 na—1
— (27ri)_M§’" < H B V(l) B(Bq)B 6 H V(2)) qu/z(l) H 41/7(2)> .
A=1 k=1 i=1 j=1 Som

We introduce the surface states ¥,, and X,, such that the BPZ inner product with the
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new states Vn(ll and “//n(f ) reproduce the Mgy, .- and M, ,,,-forms:

ni—1
Enl ) = wmy, o, (R, HD) = (@2n)” < 1‘[ BV H”i/(l)>,(10.6a)

=1 2:91»"1
n2—1
(Sl 1) 1= Wy (R H5) = (2m1) < H B(V,") H“V;2>>.<1o.6b>
=1 j=1 5

g2,n2

As described in Section 9.1.2, these states exist since the p-form are linear in each of the
external state and the BPZ inner-product is non-degenerate. Each of the surface states
corresponds to an operator

(Zn | =010 X, (0), (B, =(0[ T 0 %, (0), (10.7)

defined from (21.139). Then, the forms can be interpreted as 2-point functions on the complex
plane:

(B, 170) = {08, (07, ()0 (B 72) = (10 B0y (0)%,(0), - (108)

All the complexity of the amplitudes has been lumped into the definitions of the surface
states which contain information about the surface moduli (including the ghost insertions)
and about the n; — 1 remaining states (including the local coordinate systems). The local
coordinates around “I/n(l) and “I/n(Q) are denoted respectively as w( ) and w,(fz) Correspondingly,
the surface operators are inserted in the local coordinates w, and wq which are related to

'wflll) and 'wfi) through the inversion:

wy = I(wﬁlll)), Wy = I(w,(fz)) (10.9)

In order to rewrite (10.5) in terms of 3; and ¥, it is first necessary to express all

operators in one coordinate system, for example wflll) Hence, we need to find its relation to
¢ )

ws. Using the plumbing fixture (10.1), the relation between w;,, and ws is:
w'Elll) == - qus := f(wz). (10.10)

Then, the form (10.5) becomes

1
5 {10 S, (0)ByBg £ © Ty (0)) 0 = 5 = (S| BBy aa™ %2),  (10.11)

Mo = i

using that X5 has a well-defined scaling dimension. The factor of 271 arises by comparing the
contribution from ¥, and X,, with the factor in (10.5). The expression can be simplified

by using the relation

1 _
(S| ByBg [7)) = 75 (Zma bobo 17D (10.12)

using the expression (10.4) for B, and the state-operator correspondence:

B ) = § dul) b))l 705 — Thlrl). (013)
C

q

Ultimately, the form (10.5) reads

11 - .
= — — (3, | bobo g%°G% |2,.) . 10.14
WMy o qq< 1| 00049 " q | 2> (0 )
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It is important to remember that the plumbing fixture describes only a patch of the
moduli space, and the form defined in this way is valid only locally. As a consequence, the
integration over all moduli of My, ,, #Mg, n, does not describe Mg ,,, but only a part of
it (Section 8.3.3). Every degeneration limit with a different puncture distribution in two
different groups contributes to a different part of the amplitude.

We denote the contribution to the total amplitude (10.2) from the region of the moduli
space connected to this degeneration limit as:

Mg, .n Mgg,ny _
1 91,m1 dq dq _ =
n ¥ Wy @) = —/ () ff) —N={Z, Loglo|x,,,). (10.1
fgu ( 7 I 7 ) 27T1 Al dt)\ I‘Ql dt /\ q /\ q < llboboq q | 2) (0 5)

To proceed, we introduce a basis {¢.(k)} of eigenstates of Ly and Ly, where k* is the
D-dimensional momentum and o« denotes the remaining quantum number. Then, introducing
twice the resolution of the identity (7.36) gives:

A (‘iifD S
/ 49 9T o () Bobo 4077 |5 (K)°) (10.16)

g1,m1 g2,m2

/ /\ at (Sn, 60 () / A 4t 601

(with implicit sums over « and 3). In the last line, one recognizes the expressions of the
g1-loop ni-point amplitude with external states {”7(1) ey ”f/(l) 1> ®a } and of the go-loop and
ng-point amplitudes with external states {“1/1(2) o~ 2 R ¢5}

Agrn (K, 7 a(R)) = / WMy s (e 70 L b))

gi1,m1

Mgy ., (10.17a)
- / At (S lgak)
891:711 A=1
A (K2, 12 s(K)) = /S WMy, (K, 72 (K"
My g . (10.17b)
/ /\ At? (S, |6s(K))

The property (B.21) has been used to reverse the order of the BPZ product for the second
Riemann surface, and this cancels the factor (—1)!%«l.
Defining the second line of (10.16) as

L [dg

Aap(k, k') := A(a(k), b5 (K)°) = o~ p,

A % (6a (k)] boBo g07% [$5(K)°) , (10.18)

one has:
dPr dPr 1 L
(271') (27‘(’) Agl’nl (41/1( )’ ”(1) 1’¢0¢(k)) aﬂ(k, k/)

X Agyng (K, 72 L da(K)).

Fon «//'(1) 7/.(2) —
on(771757) (10.19)

We recover the expressions from Section 7.1.2, but for a more general amplitude. We
had found that A corresponds to the propagator: its properties are studied further in
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Section 10.2.2. Hence, the object (10.16) corresponds to the product of two amplitudes
connected by a propagator (Figure 10.2).
There are several points to mention about this amplitude:

o We will find that the propagator depends only on one momentum because (k|k') ~
6P)(k + k'), which removes one of the integral. Then, both amplitudes A, ,, and
Ag, n, contain a delta function for the momenta:

Aginy ~ 8P (K 4k k), Agn ~ 8P (ED 448D +K). (10.20)

As a consequence, the second momentum integral can be performed and yields a delta
function:
For ~ 8P (B - kD kP k2. (10.21)

”2_1

Hence, the momentum flowing in the internal line is fixed and this ensures the overall
momentum conservation as expected.

o The ghost numbers of the states ¢, and ¢g are also fixed (in terms of the external
states). Indeed, because of the ghost number anomaly, the amplitudes on M, ,, and
My, n, are non-vanishing only if the ghost numbers of these states satisfy:

n1—1 n2—1
Ngh(¢a) =2n; — Z Ngh (%(1))5 Ngh(¢ﬁ) =2ny — Z Ngh (%(2))- (10-22)
=1 j=1

The non-vanishing of F, ,, also gives another relation:

Ngh(¢a) + Ngn(¢p) = 4. (10.23)

In particular, if the external states are on-shell with Ny, = 2, we find:

Ngn(¢a) = Nen(¢s) = 2. (10.24)

As indicated in Chapter 13, such states are appropriate at the classical level since they
do not contain spacetime ghosts.

e The sum over « and f is over an infinite number of states and could diverge. In fact,
the sum can be made convergent by tuning the stub parameter (Section 10.2.4).

Properties of Feynman graphs and amplitudes in the momentum space will be discussed
further in Chapter 18.

Figure 10.2: Factorization of the amplitude into two sub-amplitudes connected by a propagator
(dashed line).
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10.1.2 Non-separating case

Next, we consider the non-separating plumbing fixture (Section 8.3.2). The computations
are almost identical to the separating case, thus we outline only the general steps.

Part of the moduli space M, ,, is covered by #Mg, ,, with g=g¢1 + 1 and n =n; — 2.
The local coordinates are denoted as w; for ¢ = 1,...,n; and the plumbing fixture reads:

Wpy —1Wn, = ¢. (10.25)

ORI

The g-loop n-point amplitude with external states {7] o o} is denoted as:

Agn = /5 Wt (R, ). (10.26)

When the n; — 2 punctures and g; = g — 1 holes move lose to each other, the form can
be written as:

gi,m1

Mg1,ny ni—2
wm, . (VD 8,,8;) =(27ri)-MZm< [T B(v")B@,)B@s) ] 7/i<1)>.

A=1 i=1 Soom
(10.27)

To proceed, one needs to introduce the surface state ¥y, _1 pn,:
Cric | 7 @ 7Y = oy, (D, 7D, (10.28)

Following the same step as in the previous section leads to:

dPk dPk
(2m)P (2m)P

Foun(H)) = Agim (R, D 5, 8a(R), 65(K)) As(k, K'), (10.29)

where the propagator is given in (10.18). This is equivalent to an amplitude for which two
external legs are glued together with a propagator, giving a loop (Figure 10.3).

Since both states ¢, and ¢z are inserted on the same surface, their ghost numbers are
not fixed, even if the external states are physical. The non-vanishing of F, ,, only leads to

the constraint:
ny— 2

Negn($a) + Ngn(d) = 201 — Y Nan(%V) =4, (10.30)
=1
As a consequence, loop diagrams force to introduce states of every ghost number. Internal
states with Ny, # 2 correspond to spacetime ghosts.
Since the propagator contains a delta function §(°)(k — k'), the integral over k' can be

removed by setting k' = —k. However, the integral over k remains since
1 1 1 1
Agrs (N0 1, Ga(B), 05 (=R)) ~ 6P (KD 4+ + K. (10.31)

Hence, the loop momentum k is not fixed, as expected in QFT.

Remark 10.1 Not all values of the moduli associated to the holes can be associated to loops
in Feynman diagrams. Only the values close to the degeneration limit can be interpreted in
this way, the other being just standard (quantum) vertices.
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Figure 10.3: Factorization of the amplitude into two sub-amplitudes connected by a propagator
(dashed line). The propagator connects two punctures of the same surface, which is equivalent
to a loop.

10.2 Feynman diagrams and Feynman rules

In the standard QFT approach, Feynman graphs compute Green functions, and scattering
amplitudes are obtained by amputating the external propagators through the LSZ prescription.
For connected tree-level processes, this requires n > 3 (corresponding to xo,» < 0).

Given a theory, there is a minimal set of Feynman diagrams — the Feynman rules — from
which every other diagram can be constructed. These rules include the definitions of the
fundamental vertices — the fundamental interactions — and of the propagator — how states
propagate between two interactions (or, how to glue vertices together). In this section, we
describe these different elements.

10.2.1 Feynman graphs

The amplitude factorization described in Section 10.1 gives a natural separation of amplitudes
into several contributions. Considering all the possible degeneration limits lead to a set of
diagrams with amplitudes of lower order connected by propagators (Figure 10.2, Figure 10.3).
This corresponds exactly to the idea behind Feynman graphs. Then, the goal is to find
the Feynman rules of the theory: since the propagator has already been identified (further
studied in Section 10.2.2), it is sufficient to find the interaction vertices.

Let’s make this more precise by considering an amplitude Ay ,(71,..., 7). The index of
an amplitude is defined to be the index (8.50) of the corresponding Riemann surfaces

r(Agn) ==7(Egn) =3g9+n—2. (10.32)

Contributions to an amplitude with a given (A, ) can be described in terms of amplitudes
Ay with r7(Ag n) < 7(Ag,n). But, the moduli space My, cannot (generically) be
completely covered with the plumbing fixture of lower-dimensional moduli spaces, i.e. with
(Mg n) < T(Mgn) (Section 8.3.3). Then, the same must be true for the amplitudes, such
that A, ,, cannot be uniquely expressed in terms of amplitudes Ay .
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The g-loop n-point fundamental vertex is defined by:

The form defined in (9.16) is integrated over a sub-section Ry, C Sy, of 'ﬁg’n. Its projection
on the base is the region V; , C M, which cannot be described by the plumbing fixture,
see (8.42b). In general, we will keep the choice of local coordinates implicit and always write
Vy.n to avoid surcharging the notations.

It corresponds to the remaining contribution of the amplitude once all graphs containing
propagators have been taken into account:

/Vm+1

Ah,m+1 Ag—h,,n—m+1

(10.34)

+ perms + %

where the permutations are taken over all legs exiting the amplitudes in the first two terms
(this includes the two legs glued together in the second term), including if necessary a weight
to avoid overcounting. In the RHS, the amplitudes A, ; are tadpoles and have no external
vertices 7; (from Ay ,,); this corresponds to the terms for m =0 and m =n — 2.

In general, the fundamental vertex is non-vanishing for every value g,n € N such that
Xg,n < 0. For this reason, the index g helps to distinguish between graphs with identical
values of n. It may look strange that one needs vertices at every loop: the interpretation will
be made clearer when translating this in the language of string field theory (Chapter 14). We
stress again that the definition of the fundamental vertex (and the region covered) depends on
the choice of local coordinates for all lower-order vertices Vg s such that r(Vy n/) < r(Vg,n).

Remark 10.2 There are different alternative notations for (10.33):

ng(“//l, ceey 7/’&) = Vg,n(®17/z) = {7/1; ey 7/”}9 (1035)

Example 10.1 — Scalar QFT

Consider a scalar field theory with a cubic and a quartic interaction. The 4-point ampli-
tude contains four contributions, three from gluing 3-point vertices with a propagator,
and one from the fundamental quartic vertex. The mismatch between the amplitude and
the three graphs with a propagator hints at the existence of the quartic interactions. This
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example gives an idea of how one can identify the fundamental interactions recursively.

The definition (10.34) of the vertex shows that it can also be interpreted as an amputated
Green function without internal propagator (i.e. there is no propagator at all). This is
expected from the definition of the interaction vertices from an action, as will be exemplified
in Chapter 14. Before describing (and generalizing) the vertices, we describe first the
properties of the propagator.

10.2.2 Propagator
The propagator has been defined in (10.18):

1 fdg df. - ;. z
e YN ?‘-’ bobo g0k (10.36)

S 2mi) g
The plumbing modulus ¢ is parametrized by (8.31)
g=et9  seR,, 6He][0,2n), (10.37)
such that the integration measure becomes

% A % = —2ids A df. (10.38)

Using the variables LOjE = Lo+ Lo and b§ = bg + by, the propagator can be recast as:
1 [ee) + 27 . _
A= _—blby / dse Lo / dge?o. (10.39)
27
0 0

The form of the first integral is recognized as the Schwinger parametrization of the propagator,
while the second is the Fourier transformation of the discrete delta function:

o) 2m
/ dse Lo = Li+ / d9e®t = 2m 5, . (10.40)
0 0 0 0’

In fact, the first integral converges only if L(J{ > 0. As argued in the introduction, divergences
for L(J)r < 0 are either non-physical or IR divergences which can be cured by renormalization.
For this reason, we take the RHS as a definition of the integral, which would be the correct
result if one starts with a field theory action instead of a first-quantized formalism.
In this case, the propagator becomes
bt

A= LLJF bo Oz o- (10.41)
0

This is the standard expression for the propagator. For completeness, the form in terms of
the holomorphic and anti-holomorphic components is:

= 1
A = —2bobg ———— 0, £, - 10.42
ey U (10.42)

The delta function restricts the amplitude to states satisfying the level-matching condition,
that is, annihilated by L; . _
Considering a basis {¢a(k)} of eigenstates of both Ly and Lo:

L5 160 = & (8 4+ m2) oK), L 19a(k)) =0 (10.43
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leads to the following momentum-space kernel for the propagator:

Bk, k) i= (8a(k)°] A I8a(K)%) 1= @m)P6P)(k + k) Aap(k), (10.44)
Basl®) 1= 2L aa ) = 2 (g I 1050 (10.44)

with Mg a finite-dimensional matrix giving the overlap of states of identical masses (because
the number of states at a given level is finite).

For the propagator to be well-defined, it must be invertible (in particular, to define a
kinetic term). The propagator (10.41) is non-vanishing if the states it acts on satisfy:

by ¢5) #0, by [65) #0. (10.45)
Necessary and sufficient conditions for this to be true are

g lee) =0, 5 leg) =0. (10.46)
Indeed, decomposing the state on the ghost zero-modes

|62) = |61) +bF [p2),  cEldr) = |2) =0 (10.47)

gives
cElgl) =0 = |g2) =0, (10.48)

and one has correctly b |¢1) # 0.
These conditions are given for the dual states: translating them on the normal states
reverses the roles of by and c¢y. Hence, the states must satisfy the conditions:

bg I¢a) =0, by |¢a) =0. (10.49)

The second condition is satisfied automatically because the Hilbert space is H~ when working
with P, ,, (Section 9.3.1). However, the first condition further restricts the states which
propagate in internal lines. This leads to postulate that the external states should also be
taken to satisfy this condition

by %) =0, (10.50)

since external states are usually a subset of the internal states. This provides another
motivation of the statement in Section 4.2.2 that scattering amplitudes for the states not
annihilated by b("]" must be trivial. A field interpretation of this condition is given in
Chapters 13 and 14.

Under these constraints on the states, the propagator can be inverted:

AT =cieg Loy o (10.51)

10.2.3 Fundamental vertices

The vertices (10.33) can be constructed recursively assuming that all amplitudes are known.
The starting point is the tree-level cubic amplitude Ag 3: since it does not contain any
internal propagator, it is equal to the fundamental vertex V) 3.

The fist thing to extract from the recursion relations are the background independent data.
This amounts to find local coordinates and a characterization of the subspaces V; , C Mgy n,
starting with Py 3 and iterating.

In the rest of this section, we show how this works schematically.
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Recursive definition: tree-level vertices

The description of tree-level amplitudes Ao, is the simplest since only the separating
plumbing fixture is used and Feynman graphs are trees. The possible factorizations of the
amplitude correspond basically to all the partitions of the set {¥;} into subsets.

Tree-level cubic vertex Since Mg 3 = 0, the moduli space of the 3-punctured sphere g 3
reduces to a point, and so does the section Sy 3 of Py 3 (Figure 10.4a):

Vos(71, 2, 15) := Ao s(14, 12, 15) = wy* (11, 3, 4). (10.52)
The corresponding graph is indicated in Figure 10.4b.
Pos )
¥4
So.3
0
s
MO,?) [ ] 7/2
(a) A section So,3 over Py 3 reduces to a (b) Fundamental cubic vertex.

point.

Figure 10.4: Section of Py 3 and cubic vertex.

Tree-level quartic vertex Part of the contributions to the 4-point amplitude Ag 4 with
external states ¥; (i = 1,...,4) comes from gluing two cubic vertices. Because there are four
external states, there are three different partitions 2|2 which are described in Figure 10.5
(see also Figure 8.7). The sum of these three diagrams does not reproduce Ag 4: the moduli
space M 4 is not completely covered by the three amplitudes. Equivalently, the projection
of the section over Py 4 does not cover all of My 4. The missing contribution is defined by
the quartic vertex (Figure 10.7)

Vou(%h, Vs, ¥, 2) = / A, ), (10.53)
Ro,4

and the corresponding section is denoted by R4 (Figure 10.6). Denoting by }'ésf’u) the
graphs 10.5 in the s-, t- and u-channels, one has the relation

Aga = FO) + FO + FM 4+ Voa. (10.54)

Tree-level quintic vertex The amplitude Ap 5 can be factorized in a greater number of
channels, the two types being 2|2|1 and 2|3. The possible Feynman graphs are built either
from three cubic vertices and two propagators (Figure 10.8a and permutations), or from one
cubic and one quartic vertices together with one propagator (Figure 10.8b and permutations).
The remaining contribution is the fundamental vertex (Figure 10.8¢c):

Vos(Fhseon 8)i= [ W0, %) (10.55)
Ro,s

The construction to higher-order follows exactly this scheme.
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N e

0 0
e Y4
(a) s-channel.
K4 Vs
0
0
0
0
72 Y4 2 Y4
(b) t-channel. (c) u-channel.

Figure 10.5: Factorization of the quartic amplitude Ag 4 in the s-, ¢- and u-channels.

local coord.

Po.a
s
\ ; RO74
\ el 80,4
v Roa —
Vo,4 Vo4 Mo.a

Figure 10.6: A section Sp4 over Pg 4, the contribution from the s-, t- and u-channels
(Figure 10.5) are indicated by the corresponding indices. The fundamental vertex is defined
by the section Vp 4.
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" Vs

75 74

Figure 10.7: Fundamental quartic vertex.

7 73
0 0
0 Y
% 4
A
(a) Factorization 12|3|45.
2
L4 3
0 0 ¥,
! 0
s s 75 Y4
(b) Factorization 12|345. (c) Fundamental vertex.

Figure 10.8: Factorization of the amplitude Gg 5 in channels and fundamental quintic vertex.
Only the cases where ¥ and ¥, factorize on one side is indicated, the other cases follow by
permutations of the external states.
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Recursive definition: general vertices

Next, one needs to consider Feynman diagrams with loops. The first amplitude which can
be considered is the one-loop tadpole A; 1(¥1). The factorization region corresponds to
the graph obtained by gluing two legs of the cubic vertex (Section 10.2.3). The remaining
contribution is the fundamental tadpole vertex V; 1(#1) (Section 10.2.3) — note the index
g = 1 on the vertex, indicating that it is a 1-loop effect.

Next, the 1-loop 2-point amplitude can be obtained using the cubic and quartic tree-level
vertices Vp 3 and V) 4, but also the one-loop tadpole V; ;. Iterating, the number of loops can
be increased either by gluing together two external legs of a graph, or by gluing two different
graphs with loops together.

For g > 2, the recursion implies the existence of vertices with no external states Vg o:
they should be interpreted as loop corrections to the vacuum energy density.

It is important to realize that, in this language, a handle in the Riemann surface is
not necessarily mapped to a loop in the Feynman graph: only handles described by the
region Fy, = My, —V, n do. The higher-order vertices — corresponding to surfaces with
small handles only and described by V, , — should be regarded as quantum fundamental
interactions. In Chapter 14, it will be explained that they really correspond to (finite)
counter-terms: the measure is not invariant under the gauge symmetry of the theory and
these terms must be introduced to restore it.

N K4

(a) Internal loop. (b) Fundamental vertex.

Figure 10.9: Factorization of the amplitude G1,; and fundamental tadpole at 1-loop.

Other vertices

The definition given at the end of (10.2.1) suggests to introduce additional vertices. The
previous recursive definition gives only vertices with x4, =2 —2g —n < 0, but, in fact, it
makes sense to consider the additional cases: g=0and n=0,1,2,and g=1,n=0.

The definition of the vertices as amputated Green function without internal propagators
provides a hint for the tree-level quadratic vertex V2. We define the latter as the amputated
tree-level 2-point Green function:

Voo = ATTAATT = A7 (10.56)

Hence, we have
Voo (1, %2) = (%l cg cg Ly b o |72) - (10.57)

Note that Vy 2 is not the 2-point scattering amplitude.

We denote the tree-level 1-point and 0-point vertices as Vo 1(7#1) and Vg o. The first can
be interpreted as a classical source in the action, while the second is a classical vacuum
energy. They are set to zero in most applications and can be safely ignored. However, they
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appear when formulating the theory on a background which does not solve the equation of
motion [318].

Finally, the 1-loop vacuum energy V; o can also be defined as the partition function of
the worldsheet CFT integrated over the torus modulus.

This allows to define the vertices V, ,, for all g,n € N. We define the sum of all loop
contributions for a fixed n as:

Va7, V) =Y _(hg2) Vg (H,- .-, Tn). (10.58)

920

10.2.4 Stubs

In Section 8.3.4, we have indicated that the plumbing fixture can be modified by adding
stubs or, equivalently, by rescaling the local coordinates. This amounts to introduce a cut-off
(8.53) on the variable s such that

qg=e*H s € [80,00), 6 € [0,2m). (10.59)

instead of (10.37). In this case, the s-integral in the propagator (10.36) is modified to

oo —50L+
/ dse=sls = £ = > (10.60)
S0 0
This leads to a new expression for the propagator:
+ e—SQLg _
A(S()) = bO L—+ bO 6L0_,0' (1061)
0

In momentum space, this reads
!
— 270 (k%2 +m2)

k2 +m2

e

Aas(k) = Mo (k). (10.62)

It is more convenient to work with the canonical propagator (10.41). This can be achieved

by absorbing e~ #Ls in the interaction vertex: a n-point interaction will get n such factors."

Since so changes the local coordinates, this means that it also changes the region V,
(Figure 8.10). The freedom in the choice of s translates into a freedom to choose which part
of the amplitude is described by propagator graphs Fg ,,(so), and which part is described by
a fundamental vertex Vg ,(so). The amplitude A, ,, is independent of s since it is described
in terms of the complete moduli space M ,,. This also means that the parameter so must
disappear when summing over the contributions from V, ,(so) and Fg ,(so). This indicates
that the value of s is not relevant, even off-shell: it can be taken to any convenient value.

The possibility of adding stubs solves the problem that the sum over all states could
diverge (see Section 10.1.1). Indeed, the expression (10.62) in momentum space shows that
the propagator includes an exponential suppression for very massive particle propagating as
intermediate states. Since the mass of a particle increases with the level, this shows that the
sum converges for a sufficiently large value of sg thanks to the factor e~'som” A second
interesting aspect is the exponential momentum suppression e~'s0k”; this is responsible for
the nice UV behaviour of string theory. Since the value of sg is not physical, this means that
all Feynman graphs must share these properties. These two points will be made more precise
in Chapter 18.

ITo make this identification precise for vertices involving external states, one has to consider the
non-amputated Green functions.
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10.2.5 1PI vertices

We can follow the same procedure as before, but considering only the separating plumbing
fixture. In this case, the Feynman diagrams are all 1PR (1-particle reducible): if a propagator
line is cut, then the graph splits in two disconnected components. The region of the moduli
space covered by these graphs is written as F)5F (8.43a). The complement defines the 1PI

region vglf;g (8.43b). Then, the 1PI g-loop n-point fundamental vertices are defined as:

), (10.63)

where R;}:;LI is a section of Py, whose projection on the base is Vglil.

10.3 Properties of fundamental vertices

10.3.1 String product

Following the definition of surfaces states (Section 9.1.2), the vertex state is defined as:
(V1| @i #5) i= Vg,n(®i75). (10.64)

The vertex is a map V., : H®" — C where C ~ H®. We will find very useful to
introduce the string products £, ,, : H®™ — H through the closed string inner product:

Von+1(Y0, M5+ P0) ==Yl cg g (P15, Tn)) - (10.65)
An alternative notation is:
Lyn(Py- s o) =[P, s Talg (10.66)

The advantage of the second notation is to show that the products with n > 3 are direct
generalization of the 2-product, which is very similar to a super-Lie bracket. These products
play a central role in SF'T — in fact, the description of SFT is more natural using the £, ,,
rather than the V, 5.

Note that the products with n = 0 are maps C — H, which means that they correspond
to a particular fixed state.

Lyo:=[]g €H. (10.67)
The ghost number of the product (10.65) is

Ngn(bgn(#1,--, 7)) =3 =20+ Y Nen(%) =3+ Y _ (Nau(%) — 2), (10.68)
i=1 =1
and it is independent of the genus g. As a consequence, the parity of the product is
lgn(P,- o, P) =1+ Y [%] mod 2, (10.69)
i=1

and the string product itself is always odd.
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The vertices satisfy the following identity for g > 0 and n > 1 [317, pp. 41-42]

n! — JC n
0= Z Z WVQ1,H1+1 (\IIm’ggz,nz (\IIM)) + (_1)I¢SIV9—1m+2 (¢sa bo ¢s7 v )

91,9220 n1,m22>0
g1+gz2=gnitnz=n
(10.70)
The last term is absent for g = 0. It is a consequence of the definition of the vertices as the

missing region from gluing lower-order vertices.

10.3.2 Feynman graph interpretation

The vertices must satisfy a certain number of conditions to be interpreted as Feynman
diagrams. The first is that they must be symmetric under permutations of the states. Not
every choice of local coordinates satisfies this requirement: this can be solved by defining the
vertex over a generalized section. In this case, the vertex is defined as the average of the

integrals over N sections Sé% of Pg.n:

N
1 .
VonFhsos 1) = 32 :/ W (T ). (10.71)

g;n

Example 10.2 — 3-point vertex
The cubic vertex must be symmetric under permutations

Vo,3(71, Y2, 13) = Vo3(73, 71, Y2) + -+ (10.72)
Taking the vertex to be given by a section Sy 3 with local coordinates f;
Vos(1, %, 1) = wy (11, Y2, 1) |s0,s = (f1 0 #4(0) f2 0 72(0) f3 0 #3(0)),  (10.73)
one finds that a permutation looks different
Vo,3(73, 71, 72) = (f1 0 ¥3(0) f2 0 71(0) f3 © 72(0)) # Vo,3("1, 72, ¥3), (10.74)

unless the local coordinates satisfy special properties (remember that the local coordinates
are specified by the vertex state V and not by the external states ¥;, so a permutation
of them does not permute the local maps). Obviously, both amplitudes agree on-shell
since the dependence in the local coordinates cancel (equivalently one can rotate the
punctures using SL(2, C)).

Writing z; = f;(0), there is a SL(2, C) transformation g(z) such that

g(z1) = 29, 9(22) = zs, 9(z3) == (10.75)
such that
Vo,3(73, 71, 72) = (g o f1 0 73(0)g o f2 0 #1(0)g o f3 0 #2(0)). (10.76)

While the state ¥; is correctly inserted at the puncture z; in this expression, this is not
sufficient to guarantee the equality of the amplitudes. Indeed the fibre is defined by the
complete functions f;(w) and not only by their values at w = 0. For this reason the
amplitudes can be equal only if

gofi=/fa gofo=fs, gofs=Ffi (10.77)
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This provides constraints on the functions f;, but it is often not possible to solve them.

If the constraints cannot be solved, then one must introduce a general section. In
this case a generalized section will be made of 6 sections S(®) (a = 1,...,6) because
there are 6 permutations. Then the amplitude reads

VO,3(,V17 %7 7/3) =

(=2

6
> wet (N, 14, 75)| 560 (10.78)
a=1 3

Figure 10.10: A generalized section {Séag} (a=1,...,6) of Py 3 for the 3-point vertex. This
is to be compared with Figure 10.4a.

When computing the Feynman graphs by gluing lower-dimensional amplitudes, it is
possible that parts of the section overlap, meaning that several graphs cover the same part
of the moduli space. In this case, the fundamental vertex should be defined as a negative
contribution in the overlap region. This procedure is perfectly well-defined since all graphs are
finite and there is no ambiguity. In practice, it is always simpler to work with non-overlapping
sections (i.e. a single covering of the moduli space). A simple way to prevent overlaps is to
tune the stub parameter sy to a large value.

By construction, the integral over V, ,, should be finite. If this is not the case, it means
that the propagator graphs also diverge and that the parametrization is not good. This can
also be solved by considering a sufficiently large value of the stub parameter sg.

10.4 References

e Plumbing fixture and amplitude factorization [237, sec. 9.3, 9.4, 312, sec. 6].
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Chapter 11

Off-shell scattering amplitudes
and Feynman diagrams —
examples

In this chapter we describe explicitly several applications of the off-shell formalism.

11.1 Feynman diagrams — closed string

11.1.1 3-point graphs

In this section we look for parametrizations of the 3-point vertex

3
{A1, 42, As}o = <H fio Ai(0)> )
=1 S2
The punctures are taken to be located at

f1(0)=0,  f(0)=1,  f3(0) =00

using a SL(2, C) transformation.

First parametrization

Consider the local map

where A € C is a fixed parameter.
The SL(2, C) transformation (20.43)

permutes the three punctures

9(0)=1, g(1)=o00,  g(c0)=0.
Then the cyclic symmetry of the vertex imposes
1 1

i) =D, )= g0 fiw) = 5
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Obviously one has f; = go fs.
The permutation of the punctures 0 and 1 is achieved by the SL(2,C) transformation

h(z) =1-z, (11.7)

such that
h(0) =1, h(1) =0, h(o0) = o0. (11.8)

For the vertex to be invariant the functions must satisfy
ho fi1 = fa, ho fa = f1, hofs=fs (11.9)

(this exhausts all possibilities since they can be found by composing with g), but one finds
that these relations does not hold. Let’s introduce a second set of functions defined by

filw) = ho folw) = 25,

f3(w) = ho f3(w)

fg(w) =ho fi(w) =1-dw,

_ 1
T’

(11.10)

Then any permutation of the punctures brings any function f; or f; into another function of
this set.

Then the tree-level cubic vertex can be defined as the weighted sum of the amplitudes
evaluated in the two sets of local coordinates

3 3
{A1, A2, As}o = % KH fio Ai(0)> + <Hfz ° Ai(0)> ] . (11.11)
i=1 g2 i=1 52

This corresponds to a generalized section, see (10.71).

11.1.2 4-point graphs

The punctures of ¥ 4 are located at Z = Z, with a =1,...,4 (Z is the global coordinate of
the sphere) and the local coordinates W, and maps F, are such that

Z=F,(W,), Z.=F,(0). (11.12)

In order to identify the quartic fundamental graph, one needs first to compute the three
graphs resulting from gluing the cubic vertex from Section 11.1.1.
First parametrization

In this section we compute the quartic graphs using the parametrization (11.11) of the cubic
vertex, with the local maps given by (11.6) and (11.10). The gluing of two cubic vertices

with local coordinates
w? = 2 (0) (11.13)

is performed by identifying the punctures w§1,2) through the plumbing fixture
wPw® = g =e ot (11.14)
The global coordinates of the spheres are denoted by z; and z5 and the global coordinate Z

of X 4 is identified with z;
Z=z. (11.15)
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In total four different gluing are possibles due to the presence of both the f; and f;:

(FI5, 555, (P 55D, (FFE£F0),  (FFFFFF). (11.16)

Consider first the (fff, fff) gluing for the s-channel, where 12 and 34 come close and
which translates into the following identification of the local coordinates

wi=wd, Wa=wl", Wi=w?, W,=uwl? (11.17)
(remember that local coordinates are inherited from the lowest-dimensional surfaces).
The local map F; and F; are directly found to be

1 1

F(W) T

The two other functions are found after relating the zy coordinate to z;

AqW
— )2 _ —
F;(W) = A%q(1 — A\W) E,(W) T (11.18b)
The locations of the punctures are found by setting W = 0
Fi(0)=1, F(0)=o00, F3(0)=X%q, F40)=0. (11.19)

The part of the moduli space covered by this diagram is found by varying ¢ with |g| < 1: the
region covered by Zs is a circle of radius A% centred at Z; (Figure 11.1). This was expected
since the graph under concerned corresponds to the degeneration limit where Z3 and Z4 are
close.

Computation — Equation (11.18)
Using the identification z; = Z and of W; = w
map fo one finds

él), and the expression (11.6) of the local

1
21 = fél)(wgl)) = 1)
1—Aw, (11.20)

= Z = F,(W) = Fy(wd).

A similar computation gives F5.
For the two other functions one needs to relate the z; and 22 coordinate systems

7= )\w:(ll), 29 = )\wf), = 2120 = \q. (11.21)
Then one finds
A2q

— = Nq(1- D). (11.22)
2

Fy(w$?) =2 =

The last function F} is obtained similarly.

The u- and ¢-channel graphs can be constructed by exchanging two punctures before
performing a SL(2,C) transformation to put them in their original places. This moves the
disks and one finds that they are centred respectively around Z; = 1 and Z3; = oo.

Note that the parameter A is arbitrary, but it is convenient to choose it such that the
disks do not overlap

A< —. (11.23)

Sl
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Zo

[
8

A2 Zs

Figure 11.1: Part of the moduli space My4 = C (parametrized by Z3) covered by the
s-channel graph.

11.2 Bibliography
o Off-shell amplitudes [27, 43, 44, 185].
o Feynman diagrams [22, 32, 33, 54, 70, 94, 184, 248].
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Part 111

Bosonic string field theory
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Chapter 12

String field

In this chapter, we introduce general concepts about the string field. The goal is to give
an idea of which type of object it is and of the different possibilities for describing it. We
will see that the string field is a functional and, for this reason, it is more convenient to
work with the associated ket field, which can itself be represented in momentum space. We
focus on what to expect from a free field, taking inspiration from the worldsheet theory. The
interpretation becomes more difficult when taking into account the interactions.

12.1 Field functional

A string field, after quantization, is an operator which creates or destroys a string at a given
time. Since a string is a 1-dimension extended object, the string field ¥ must depend on the
spatial positions of each point of the string denoted collectively as X*. Hence, the string
field is a functional W[X*]. The fact that it is a functional rather than a function makes the
construction of a field theory much more challenging: it asks for revisiting all concepts we
know in point-particle QFT without any prior experience with a simple model.

It is important that the dependence is only on the shape and not on the parametriza-
tion. However, it is simpler to first work with a specific parametrization X (o) and make
sure that nothing depends on it at the end (equivalent to imposing the invariance under
reparametrization of the worldsheet). This leads to work with a functional ¥[X ()] of fields
on the worldsheet (at fixed time). To proceed, one should first determine the degrees of
freedom of the string, and then find the interactions. The simplest way to achieve the first
step is to perform a second-quantization of the string wave-functional: the string field is
written as a linear combination of first-quantized states with spacetime wave functionals as
coefficients.” This provides a free Hamiltonian; trying to add interactions perturbatively
does not work well.

It is not possible to go very far with this approach and one is lead to choose a specific
gauge, breaking the manifest invariance under reparametrizations. The simplest is the
light-cone gauge since one works only with the physical degrees of freedom of the string.
While this approach is interesting to gain some intuitions and to show that, in principle, it is
possible to build a string field theory, it requires making various assumptions and ends up

IThe problem is not in working with the wordline formalism and writing a BRST field theory, but really
to take into account the spatial extension of the objects. In fact, generalizing further to functionals of
extended (p > 1)-dimensional objects — branes — shows that SFT is the simplest of such field theories.

2The description of the first-quantized states depends on the CFT used to describe the theory. This
explains the lack of manifest background independence of SFT. Unfortunately, no better approach has been
found until now.
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with problems (especially for superstrings).®

Since worldsheet reparametrization invariance is just a kind of gauge symmetry — maybe
less familiar than the non-Abelian gauge symmetries in Yang—Mills, but still a gauge symmetry
—, one may surmise that it should be possible to gauge fix this symmetry and to introduce a
BRST symmetry in its place. This is the program of the BRST (or covariant) string field
theory in which the string field depends not only of the worldsheet (at fixed time), but also
on the ghosts: ¥[X (o), c(o)]. There is no dependence on the b ghost because the latter is
the conjugate momentum of the ¢ ghost: in the operator language, b(a) ~ %.

The BRST formalism has the major advantage to allow to move easily from D = 26
dimensions — described by X* scalars (1 =0,...,25) — to a (possibly curved) D-dimensional
spacetime and a string with some internal structure — described by a more general CFT, in
which D scalars X* represent the non-compact dimensions and the remaining system with
central charge 26 — D describes the compactification and structure. It is sufficient to consider
the string field as a general functional of all the worldsheet fields. For simplicity, we will
continue to write X in the functional dependence, keeping the other matter fields implicit.

It is complicated to find an explicit expression for the string field as a functional of X (o)
and ¢(o). In fact, the field written in this way is in the position representation and, as usual
in quantum mechanics, one can choose to work with the representation independent ket |U):

U[X(0),c(0)] :==(X(0),c(0)|T). (12.1)

It is often more convenient to work with |¥) (which we will also denote simply as ¥, not
distinguishing between states and operators). The latter will be the basic object of SFT in
most of this review.

Writing a field theory in terms of |¥) may not be intuitive since in point-particle QFT,
one is used to work with the position or momentum representation. In fact, there is a very
simple way to recover a formulation in terms of spacetime point-particle fields, which can be
used almost whenever there is a doubt about what is going on. Indeed, as is well-known from
standard worldsheet string theory, the string states behave like a collection of particles. This
is because the modes of the CFT fields (like a},) carry spacetime indices (Lorentz, group
representation. . .) such that the states themselves carries indices. Indeed, these quantum
numbers classify eigenstates of the operators Ly and Ly. On the other hand, positions and
shapes are not eigenstates of any simple CFT operator.

12.2 Field expansion

It follows that the second-quantized string field can be written as a linear combination of
first-quantized off-shell states |4 (k)) = ¥(k;0,0) |0) (which form a basis of the CFT Hilbert

space H): .
Z/ (2m)P Ya (k) [pa(k)) (12.2)

where k is the D-dimensional momentum of the string (conjugated to the position of the
centre-of-mass) and « is a collection of discrete quantum numbers (Lorentz indices, group
representation. .. ). When inserting this expansion inside the action, we find that it reduces
to a standard field theory with an infinite number of particles described by the spacetime
fields 1, (k) (momentum representation). The fields can also be written in the position

3While this approach has been mostly abandoned, recent results show that it can still be used when
defined with a proper regularization [8, 140-143].
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representation by Fourier transforming only the momentum % to the centre-of-mass x:
dPk
(2m)P

However, we will see that it is often not convenient because the action is non-local in position
space (including for example exponentials of derivatives).

The physical intuition is that the string is a non-local object in spacetime. It can be
expressed in momentum space through a Fourier transformation: variables dual to non-
compact (resp. compact) dimensions are continuous (discrete). As a consequence, the
momentum is continuous since the centre-of-mass move in the non-compact spacetime, while
the string itself has a finite extension and the associated modes are discrete but still not
bounded (and similarly for compact dimensions). This indicates that the spectrum is the
collection of a set of continuous and discrete modes. Hence, the non-locality of the string
(due to the spatial extension) is traded for an infinite number of modes which behave like
standard particles. In this description, the non-locality arises: 1) in the infinite number of
fields, 2) in the coupling between the modes, 3) as a complicated momentum-dependence of
the action.

When we are not interested in the spacetime properties, we will write a generic basis of
the Hilbert space H as {¢,}:

Ya(T) = e 71hq (k). (12.3)

The sum over r includes discrete and continuous labels.

Remark 12.1 (Classical fields and quantum states) The states |¢q(k)), being eigen-
states of the CFT Hamiltonian, are (first-quantized) quantum states. A classical field U can
then be written as a linear combination of such states with coefficients 14 (k) corresponding
to wave functions. A specific choice of these functions gives a profile to the classical field. As
long as the coefficients are functions, the field U is classical: (second-)quantization replaces
the functions by operators, and, at this point, the field V is promoted to a quantum operator.
The fact that one uses first-quantized states to describe the field configuration does not mean
that the field itself is quantized: this is just a particularly useful description since one knows
already a basis of possible configurations.

Example 12.1 — Scalar field
In order to illustrate the notations for a point-particle, consider a scalar field ¢(z). It
can be expanded in Fourier modes as:

de ik-x
P(z) = P B(k)e*=. (12.5)
The corresponding ket |¢) is found by expanding on a basis {|k)}:
dPk
= k k) = (k|o) . .

9= [ Gy 00 R, 606) = (ko) (126)

Similarly, the position space field is defined from the basis {|z)} such that:

dPk .

o@) = (i) = [ G @) ES),  (alk) = (127)
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12.3 Summary

In this chapter, we introduced general ideas about what a string field is. We now need to
write an action. In general, one proceeds in two steps:

1. build the kinetic term (free theory):

(a) equations of motion — physical states

(b) equivalence relation — gauge symmetry
2. add interactions and deform the gauge transformation

We consider the first point in the next chapter, but we will have to introduce more machinery
in order to discuss interactions.

12.4 References

e General discussions of the string field and of the ideas of string field theory can be
found in [236, sec. 4, 316].

 Light-cone SFT is reviewed in [299, 151, chap. 6, 152, chap. 9].
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Chapter 13

Free BRST string field theory

In this chapter, we construct the BRST (or covariant) free bosonic string field theories. It is
useful to first ignore the interactions in order to introduce some general tools and structures
in a simpler setting. Moreover, the free SFT is easily constructed and does not require as
much input as the interactions. In this chapter, we discuss mostly the open string, keeping
the closed string for the last section. We start by describing the classical theory: equations
of motion, action, gauge invariance and gauge fixing. Then, we perform the path integral
quantization and compute the action in terms of spacetime fields for the first two levels
(tachyon and gauge field).

13.1 Classical action for the open string

Contrary to most of this review, we will exemplify the discussion with the open string. The
reason is that most computations are the same in both the open and closed string theories,
but the latter requires twice more writing. There are also a few subtleties which can be more
easily explained once the general structure is understood. Everything needed for the open
string for this chapter can be found in Chapter 23: in fact, describing the open string (at this
level) is equivalent to considering only the holomorphic sector of the CFT and setting py, = p
(instead of p/2). We consider a generic matter CFT in addition to the ghost system and we
denote as H the space of states. The open and closed string fields are denoted respectively
by ® and ¥, such that it is clear which theory is studied.

An action can be either constructed from first principles, or it can be derived from the
equations of motion. Since the fundamental structure of string field theory is not (really)
known, one needs to rely on the second approach. But do we already know the (free)
equations of motion for the string field? The answer is yes. But, before showing how these
can be found from the worldsheet formalism, we will study the case of the point-particle to
fix ideas and notations.

13.1.1 Warm-up: point-particle

The free (or linearized) equation of motion for a scalar particle reads:
(—A +m?)¢(x) = 0. (13.1)

Solutions to this equation provides one-particle state of the free theory: a convenient basis is
{el**}, where each state satisfies the on-shell condition

k* = —m? (13.2)
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The field ¢(z) is decomposed on the basis as

é(z) = / dk ¢(k)elr®, (13.3)

where ¢(k) are the coefficients of the expansion. Since the field is off-shell, the condition

k? = —m? is not imposed. Following Chapter 12, the field can also be represented as a ket:
o(z) = (zl¢),  B(k) = (kl$), (13.4)

or, conversely:
8)= [ deo(@)le) = [ ako®) 1), (13.5)

Writing the kinetic operator as a kernel:
K(z,2') :=(z| K |2') = 6(x — z') (-A, + m?), (13.6)

the equations of motion reads
/ Az K(2,2)¢(x) =0 <« K@) =0. (13.7)

An action can easily be found from the equation of motion by multiplying with ¢(z) and
integrating:

1

S=; [ o)A+ mple) = § [dode! G0)K (@ N0).  (139)

It is straightforward to write the action in terms of the ket:

S=1 61K1¢). (13.9)

There is one hidden assumption in the previous lines: the definition of a scalar product.
A natural inner product is provided in the usual quantum mechanics by associating a bra to
a ket. Similarly, integration provides another definition of the inner product when working
with functions. We will find that the definition of the inner product requires more care in
closed SFT. To summarize, to write the kinetic term of the action, one needs the linearized
equation of motion and an appropriate inner product on the space of states.

13.1.2 Open string action

The worldsheet equation which yields precisely all the string physical states |¢) is the BRST
condition:

Qs |¢¥) =0. (13.10)

Considering the open string field ® to be a linear combination of all possible one-string states

%)
deH, (13.11)

the equation of motion is:
Qp|®)=0. (13.12)

Moving away from the physical state condition, the string field ® is off-shell and is expanded
on a general basis {¢,} of H. This presents a first difficulty because the worldsheet approach
— and the description of amplitudes — looks ill-defined for off-shell states: extending the usual
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formalism will be the topic of Chapter 7. However, this is not necessary for the free theory
and we can directly proceed.

Next, we need to find an inner product (-,-) on the Hilbert space H. A natural candidate
is the BPZ inner product since it is not degenerate

(A, B) := (A|B), (13.13)
where (A| = |A)" is the BPZ conjugate (21.77) of |A), using I~. This leads to the action:

S= % (@,Qpd) = % (@] Qp |®). (13.14)

Due to the definition of the BPZ product, the action is equivalent to a 2-point correlation
function on the disk.
The inner product satisfies the following identities:

(4,B) = (-1)"IPI(B, 4),  (QpA,B) = —(-1)*(4,Q5B), (13.15)

where |A| denotes the Grassmann parity of the operator A.

A first consistency check is to verify that the ghost number of the string can be defined
such that the action is not vanishing. Indeed, the ghost number anomaly on the disk implies
that the total ghost number must be Ng, = 3. Since physical states have Ny, = 1, it is
reasonable to take the string field to satisfy the same condition, even off-shell:

N (®) = 1. (13.16)

This condition means that there is no ghost at the classical level beyond the one of the energy
vacuum [}), which has Ny, = 1. Moreover, the BRST charge has Ngi(Qp) = 1, such that
the action has ghost number 3.

One needs to find the Grassmann parity of the string field. Using the properties of the
BPZ inner product, the string field should be Grassmann odd

@] =1 (13.17)

for the action to be even. This is in agreement with the fact that the string field has ghost
number 1 and that the ghosts are Grassmann odd. One must impose a reality condition on
the string field (a complex field would behave like two real fields and have too many states).
The appropriate reality condition identifies the Euclidean and BPZ conjugates:

|®)F = |3)°. (13.18)
That this relation is correct will be checked a posteriori for the tachyon field in Section 13.4.

Computation — Equation (13.17)

(®,Qpd) = (—1)I211R=2D(Qp®, &) = (—1)I21+I12D(Q L, ®)
= (@52, ®) = —(-1)"(2,Qp),

where both properties (13.15), together with the fact that |®|(1 + |®|) is necessarily
even. In order for the bracket to be non-zero, one must have |®| = 1.

Since the Hilbert space splits as H = Ho @ coHo with Ho = H Nker by, see (23.31), it is
natural to split the field as (this is discussed further in Section 13.2):

@) = |®y) +co[8,), (13.19)
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where . ~
®,, 2 ety = b |®¢> =bo |(1>¢> =0. (13.20)

The ghost number of each component is
Ngn(®) =1,  Ng(®,) =0. (13.21)
Remembering the decomposition (23.14a) of the BRST operator
Qp = coLo — boM + Qp, (13.22)
inserting the decomposition (13.19) in the action (13.14) gives:
5= (@l coLo |2, + 3 @yl coM [By) +(By | coQs [21). (13.23)
The equations of motion are obtained by varying the different fields:

0=—M|®)+Qp|®,), 0=coLo|®)+coQp|®,). (13.24)

Computation — Equation (13.23)
Let’s introduce the projector II; = bycy on the space Hy = H Nker by and the orthogonal

projector I, = cobo such that
|©) =) +(®4),  [®) =T [|®), |B)=1Ld). (13.25)
We then have:
I,Qp |®) = —boM |®+) + Qp |®,), .Q5|®) =colo|®,)+Qp|®:), (13.26)

using R
[, @] = [Is, M] = [IL, Lo] = 0. (13.27)

Then, we need the fact that Hl =1II,. to compute the action:

= 1 (®,Qp)

= _(II,® 4+ 11,8, Qp®)

S

_ 1 -
= - (II;®,11,QpP) + 3 (I1;9,11,Qp®)

=N =N =

. 1 N
= — (@i, COLO@i + QBq)T> + 5 (@T, —boM‘I)T + QB@O

1 1 1 ~
5 = 5 (21, 00M®4) + 5 (81, QB2y).

= = (®},coLo®)) + - (B, Qpdy)

NN

The result follows by setting |®4+) = co |®), using (13.15) and that the BPZ conjugate of
co is —cg.

13.1.3 Gauge invariance

In writing the action, only the condition that the states are BRST closed has been used. One
needs to interpret the condition that the state are not BRST-exact, or phrased differently
that two states differing by a BRST exact state are equivalent:

|9) ~ [¥) + QB A) . (13.28)
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Uplifting this condition to the string field, the most direct interpretation is that it corresponds
to a gauge invariance:

@) — [®') = [®) +64|®),  A|®)=QB|A)  Na(A)=0. (13.29)

In order for the ghost numbers to match, the gauge parameter has vanishing ghost number.
The action (13.14) is obviously invariant since the BRST charge is nilpotent.

13.1.4 Siegel gauge

In writing the action (13.14), the condition by |1)) = 0 has not been imposed on the string field.
In Section 4.2.2, this condition was found by restricting the BRST cohomology, projecting out
states built on the ghost vacuum |1), as required by the behaviour of the on-shell scattering
amplitudes. In Chapter 23, we obtained it by finding that the absolute cohomology contains
twice more states as necessary. This was also understood as a way to work with a specific
representative of the BRST cohomology. Since the field is off-shell and since the action
computes off-shell Green functions, these arguments cannot be used, which explains why we
did not use this condition earlier.
On the other hand, the condition

bo |®) = 0 (13.30)

can be interpreted as a gauge fixing condition, called Siegel gauge. It can be reached from
any field through a gauge transformation (13.29) with

bo
L_O’
where A was defined in (23.39) and will be identified with the propagator. Note that by = 0
does not imply Ly = 0 since the string field is not BRST closed.

This gauge choice is well-defined and completely fixes the gauge symmetry off-shell,
meaning that no solution of the equation of motion is pure gauge after the gauge fixing. This
is shown as follows: assume that |} = Qg |x) is an off-shell pure-gauge state with Ly # 0,
then, because it is also annihilated by by, one finds:

0={Qs,bo} [} = Lo |¢) (13.32)

IA) = —A|®), A= (13.31)

which yields a contradiction.

The gauge fixing condition breaks down for Ly = 0, but this does not pose any problem
when working with Feynman diagrams since they are not physical by themselves (nor are
the off-shell and on-shell Green functions). Only the sum giving the scattering amplitudes
(truncated on-shell Green functions) is physical: in this case, the singularity Lo = 0 cor-
responds to the on-shell condition and it is well-known how such infrared divergences for
intermediate states are removed (through the LSZ prescription, mass renormalization and
tadpole cancellation).

Computation — Equation (13.31)
Performing a gauge transformation gives

by |®') = bo |®) + boQp |A) = 0. (13.33)

Then, one writes

bo |®) = bo{@B, A} |®) = boQBA (D), (13.34)
using the relation (23.37), the expression (23.39) and the fact that b2 = 0. Plugging this
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back in the first equation gives:
bo@p (A |®) + |A)) =0. (13.35)

The factor of by can be removed by multiplying with ¢y, and the parenthesis should
vanish (since it is not identically closed), which means that (13.31) holds up to a BRST
exact state.

Example 13.1 — Gauge fixing and singularity
In Maxwell theory, the gauge transformation

AL =A, +0uA, (13.36)
is used to impose the Lorentz condition
8”A:4 =0 = AX=-0'A,. (13.37)
In momentum space, the parameter reads

kM

A= 12 A, (13.38)

It is singular when k is on-shell, k2 = 0. However, this does not prevent from computing
Feynman diagrams.

To understand the effect of the gauge fixing on the string field components, decompose
the field as (13.19) |®) = |®}) + ¢o |®,). Then, imposing the condition (13.30) yields

8,)=0 = |®)=|3,). (13.39)

This has the expected effect of dividing by two the number of states and show that they are
not physical.
Plugging this condition in the action (13.23) leads to gauge fixed action

S= % (®coLo |B) (13.40)

for which the equation of motion is
Ly |®) = 0. (13.41)

But, note that this equation contains much less information than the original (13.12): as |® )
is truncated from (13.40), a part of the equations of motion is lost. The missing equation
can be found by setting |®) = 0 in (13.24) and must be imposed on top of the action:

Qs |®) =0. (13.42)

It is called out-of-Siegel gauge constraint and is equivalent to the Gauss constraint in
electromagnetism: the equations of motion for pure gauge states contain also the physical
fields, thus, when one fixes a gauge, these relations are lost and must be imposed on the side
of the action. This procedure mimics what happens in the old covariant theory, where the
Virasoro constraints are imposed after choosing the flat gauge (if ® contains no ghost on
top of |{), then @ B = 0 implies L,, = 0, see Section 23.3.3). Moreover, the states which do
not satisfy the condition by = 0 do not propagate: this restricts the external states to be
considered in amplitudes.
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Remark 13.1 Another way to derive (13.40) is to insert {bg,co} = 1 in the action:

§ = 5 (21 Qn{eo,bo} 12) = 3 (8] Qsboco [2)

= DN

= £ (®] (b, Qs)eo [8) — 3 (®]50Qico|2)

[\V]

1
= 5 <(I)| CoLO |¢’> .

The drawback of this computation is that it does not show directly how the constraints (13.42)
arise.

Remark 13.2 (Generalized gauge fixing) It is possible to generalize the Siegel gauge,
in the same way that the Feynman gauge generalizes the Lorentz gauge. This has been studied
in [5, 6].

In this section, we have motivated different properties and adopted some normalizations.
The simplest way to check that they are consistent is to derive the action in terms of the
spacetime fields and to check that it has the expected properties from standard QFT. This
will be the topic of Section 13.4.

13.2 Open string field expansion, parity and ghost num-
ber

A basis for the off-shell Hilbert space H is denoted by {¢,}, where the ghost numbers and
parity of the states are written as:

1y = Ngn(¢r), |¢r] = n, mod 2. (13.43)

The corresponding basis of dual (or conjugate) states {¢¢} is defined by (21.158):

(¢7]¢s) = Ors- (13.44)
The basis states can be decomposed according to the ghost zero-modes
|6r) = 1¢1r) +1brr) s boldyr) =colprr) =0. (13.45)

Finally, each state 14 € coH can be associated to a state i[)v:

[¥1) = co |QZ¢> ) bo |1Z¢> =0, Ngn(Y4) = Ngh(zzl) +1. (13.46)

More details can be found in Section 7.2.
Any field ® can be expanded as

@) => "t |dr) (13.47)

where the v, are spacetime fields (remembering that r denotes collectively the continuous
and discrete quantum numbers).

IThe notation is slightly ambiguous: from (13.45), it looks like both components of ¢, have the same
coefficient ¢,-. But, in fact, one sums over all linearly independent states: in terms of the components of ¢,
different basis can be considered; for example {¢, ,,$¢ .}, or {¢) » & ¢4 r}. A more precise expression can
be found in (13.54) and (13.56).
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Obviously, the coefficients do not carry a ghost number since they are not worldsheet
operators. However, they can be Grassmann even or odd such that each term of the sum has
the same parity, so that the field has a definite parity:

vr: |®] = |47 |#r]- (13.48)

If the field is Grassmann odd (resp. even) then the coefficients v, and the basis states must
have opposite (resp. identical) parities, such that |®| = 1.

Since the parity results from worldsheet ghosts and since there would be Grassmann odd
states even in a purely bosonic theory, it suggests that the parity of the coefficients .. is
also related to a spacetime ghost number G defined as:

G(r) =1-n,. (13.49)

The normalization is chosen such that the component of a classical string field (Ngn = 1) are
classical spacetime fields with G = 0 (no ghost). We will see later that this definition makes
sense.

A quantum string field ® generally contains components ®,, of all worldsheet ghost
numbers n:

=) "®,  Np(®)=n. (13.50)

nez

The projections on the positive and negative (cylinder) ghost numbers are denoted by ®4:

=3, +0, D=3, E_=)» &, (13.51)

n>1 n<l

The shift in the indices is explained by the relation (6.41) between the cylinder and plane
ghost numbers.

For a field ®,, of fixed ghost number, coefficients of the expansion vanish whenever the
ghost number of the basis state does not match the one of the field:

Vo, #n: P, =0. (13.52)

Another possibility to define the field ®,, is to insert a delta function:

|@n) = 6(Ngn —n) [¥) = D 8(nr — 1) %y 1) (13.53)
According to (13.45), a string field @ can also be separated in terms of the ghost zero-

modes:

) = |®,) +[@1) = |®,) +co|D)), (13.54a)
B1) =co @),  [®)) =1bo|®), (13.54b)

where the components satisfy the constraints
bo|®,) =0, co|®1)=0, b|®,)=0. (13.55)

The fields |®;) and |®4) (or |® 1)) are called the down and top components and they can be
expanded as:

1B1) =) ¥urlbre), (D)= o ldre). (13.56)

174



13.3 Path integral quantization

The string field theory can be quantized with a path integral:
Z= / d®e e~ S[%al = / A, e~ 3(2a1lQBI%a) (13.57)

An index has been added to the field to emphasize that it is the classical field (no spacetime
ghosts). The simplest way to define the measure is to use the expansion (12.4) such that

Z= / [ dw. e=Ste-1, (13.58)

13.3.1 Tentative Faddeev—Popov gauge fixing

The action can be gauge fixed using the Faddeev—Popov formalism. The gauge fixing
condition is
F(®c1) := by [®a1) = 0. (13.59)

Its variation under a gauge transformation (13.29) reads

§F = boQp |Aa) (13.60)

which implies that the Faddeev—Popov determinant is

oF

This determinant is rewritten as a path integral by introducing a ghost C' and an antighost
B’ string fields (the prime on B’ will become clear below):

det bQ = / dB'dCe 5", Spp = —(B|bQ5 [C). (13.62)

The ghost numbers are attributed by selecting the same ghost number for the C' ghost and
for the gauge parameter, and then requiring that the Faddeev—Popov action is non-vanishing:

Ngo(B')=3,  Ng(C)=0. (13.63)

The ghosts can be expanded as
|B') = 6(Ngn —3) Y b 1¢r),  |C) =6(Ngn) > _crlér), (13.64)

where the coefficients b, and ¢, are Grassmann odd in order for the determinant formula to
make sense:
|br| = |C7-| =1 (13.65)

Then, since the basis states appearing in B’ and C are respectively odd and even, this implies
|B'| =0, |IC| = 1. (13.66)

However, there is a redundancy in the gauge fixing because the Faddeev—Popov action is
itself invariant under two independent transformations:

5ICY =QplA_1),  Ng(A_p) = -1, (13.67a)
5By =by|A),  Ng(A')=4. (13.67b)
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This residual invariance arises because not all |A¢)) generate a gauge transformation. Indeed,
if
|A) =|Ao) + @B [A-1), (13.68)

the field transforms as
@) — |®a) + Q5 |Ao) (13.69)

and there is no trace left of |[A_1), so it should not be counted.

The second invariance (13.67b) is not problematic because by is an algebraic operator (the
Faddeev—Popov action associated to the determinant has no dynamics). The decompositions
of the gauge parameter A’ and the B’ field into components (13.54) read:

|B')=|B})+c|B), |B):=|B)), (13.70a)
A) = |A}) +co [A) . (13.70b)

The gauge transformations act on the components as:
§|B))=1A}),  4§|B)=0. (13.71)

This shows that B is gauge invariant and Bi can be completely removed by the gauge
transformation. This makes sense because B| does not appear in the action (13.62). The
gauge transformation (13.67b) can be used to fix the gauge:

|F'Yy=co|B)=0 = |B})=0. (13.72)

This fixes completely the gauge invariance since the field B is restricted to satisfy by |B) = 0,
and the component form (13.71) of the gauge transformation shows that no transformation
is allowed. Moreover, there is no need to introduce a Faddeev—Popov determinant for this
gauge fixing because the corresponding ghosts would not couple to the other fields (and this
would continue to hold even in the presence of interactions, see Remark 13.4). Indeed, from
the absence of derivatives in the gauge transformation, one finds that the determinant is
constant and thus a ghost-representation is not necessary:

/

oF 1 1
det SN det cobg = det cg det by = 3 det{bg, co} = 3 (13.73)

Then, redefining the measure, the partition function and action reduce to
App = / dBdC e SrBCl Spp =(B|Qgp|C). (13.74)
Note that the field B satisfies
by |B) =0, Ngn(B) =2, |B| = 1. (13.75)
Since both fields are Grassmann odd, the action can be rewritten in a symmetric way:
1
Ser = 5 ((BIQz |C) +(C| Qz|B) ). (13.76)
Remark 13.3 (Ghost and anti-ghost definitions) The definition of the anti-ghost B
and ghost C is appropriate because the worldsheet and spacetime ghost numbers are related
by a minus sign (and a shift of one unit). In the BV formalism, we will see that the fields

contain the matter and ghost fields, while the antifields contain the anti-ghosts. These two
sets are respectively defined with Ngp, <1 and Ngp > 1.
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The constraint by |B) = 0 can be lifted by adding a top component:
B) =1By) +co|By) (13.77)
together with the gauge invariance
§|B) = Qs |A1). (13.78)

Note the difference with (13.70): while B = Ei was the top component of the B’ field, here,

it is defined to be the down component, such that |B,) = |§i) However, for the moment,
we keep B to satisfy by |B) = 0.

Remark 13.4 (Decoupling of the ghosts) Since the theory is free the Faddeev—Popov
action (13.74) could be ignored and absorbed in the normalization because it does not couple
to the field. On the other hand, when interactions are included, the gauge transformation
is modified and the ghosts couple to the matter fields. But this is true only for the C
transformation (13.67a), not for (13.67b). Then it means that ghosts introduced for gauge
fizing (13.67b) will never couple to the matter and other ghosts.

The invariance (13.67a) is a gauge invariance for C' and must be treated in the same
way as (13.29). Then, following the Faddeev—Popov procedure, one is lead to introduce new
ghosts for the ghosts. But, the same structure appears again. This leads to a residual gauge
invariance, which has the same form. This process continues recursively and one finds an
infinite tower of ghosts.

13.3.2 Tower of ghosts

In order to simplify the notations, all the fields are denoted by ®,, where n gives the ghost
number:

e &, := @ is the original physical field
e &( := C and, more generally, ®,, with n < 1 are ghosts
e &, := B and, more generally, ®,, with n > 1 are anti-ghosts

The recipe is that each pair of ghost fields (®,,42,®_,,) is associated to a gauge parameter
A_, 1 with n > 0. It is then natural to gather all the fields in a single field

|8) = [®n) (13.79)

satisfying the gauge fixing constraint:
bo|®) =0 = bo|®,)=0. (13.80)

For n < 1, these constraints are gauge fixing conditions for the invariance § |®,) = QpA,.
For n > 1, they arise by considering only the top component of the B field.

Finally, the gauge fixing condition can be incorporated inside the action by using a
Lagrange multiplier 8, which is an auxiliary string field containing also components of all
ghost numbers:

1B) = 1Bn)- (13.81)
nes
The path integral then reads
Z= / d®dBeS1®Al, (13.82)
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where

512, 6] = 5(21 Qs |8) +(8]bo |2) (13.83)
= Z( (@2-n| QB |Pn) +(Ba—n|bo |<I>n>). (13.83Db)

The first term of the action has the same form as the classical action (13.14), but now includes
fields at every ghost number. The complete BV analysis is relegated to the interacting theory.
Removing the auxiliary field 8 = 0, one finds that the action is invariant under the

extended gauge transformation
0|®) =Qp|A), (13.84)

where the gauge parameter has also components of all ghost numbers:

=> |An). (13.85)

nez

13.4 Spacetime action

In order to make the string field action more concrete, and as emphasized in Chapter 12, it
is useful to expand the string field in spacetime fields and to write the action for the lowest
modes. This also helps to check that the normalization chosen until here correctly reproduces
the standard QFT normalizations. For simplicity we focus on the open bosonic string in
D = 26.

13.4.1 Classical action

We build the string field from the vacuum |k,J) (Chapter 23) by acting with the ghost
positive-frequency modes b_,, and c_,,, the zero-mode ¢y, and scalar oscillators ia*
Up to level £ = 1, the classical open string field can be expanded as

D o
%) = = [ G5 (10 + Au(bo” 1+1\/;B<’“>”—100+"')"“’“ (12.86)

before gauge fixing. The spacetime fields are T'(k), A,(k) and B(k): their roles will be
interpreted below. The first two terms are part of the |®;) component, while the last term is
part of the |®4+) component. All terms are correctly Grassmann even and they have vanishing
spacetime ghost numbers. The normalizations are chosen in order to retrieve the canonical
normalization in QFT. The factor of i in front of B is needed for the field B to be real (as
can be seen below, this leads to the expected factor ik, which maps to d, in position space).

The equation (13.12) leads to the following equations of motion of the spacetime fields:

(k> —1)T(k) =0,  k®A,(k)+ik,B(k) =0,

k*A, (k) +iB(k) = 0. (13.87)
Moreover, plugging the last equation into the second one gives
2A, (k) — kuk - A(k) = 0. (13.88)
After Fourier transformation, the equations in position space read:
(d/A+1)T =0, B =0*A,, AA,=0,B. (13.89)
This shows that T'(k) is a tachyon with mass m? = —1/a’ and A, (k) is a massless gauge

field. The field B(k) is the Nakanishi-Lautrup auxiliary field: it is completely fixed once A,
is known since its equation has no derivative. Siegel gauge imposes B = 0 which shows that
it generalizes the Feynman gauge to the string field.
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Computation — Equation (13.87)
Keeping only the levels 0 and 1 terms in the string field, it is sufficient to truncate the
BRST operator as

QB = coLo — boM + Qp,
M ~2_ic1, Qp~cL™ +c LT, (13.90)
LTNO[O'OQ, LTl~a0-a_1.

Acting on the string field gives

D
@sl9) = — [ g0 (TW0eaLo k) + A, (1) (colo + npe-ratat) o, I )

.| v
+i 5 B(k)( — 2boc_1c1 + nl,pcla_lag) b_1co |k,,L))

1 dPk K2 e
= / oL (T(k)(ak Do |k, 1)

a/

+ A, (k) (a’k2c0ai L+ V2o, n" kP c_1) Ik, 1)

+ i\/g B(k) (20_1 +V2a/n, kP 1c0) |k,¢))
= [ ot (109~ Deoi

+ao (Au(k)kz + ik“B(k) coa | [k, 1)

~—~~

+V2a/ (k“A“(k) + iB(k))c_1 Ik, 1) )

One needs to be careful when anticommuting the ghosts and we used that py = k and
ap = V2a'k for the open string. It remains to require that the coefficient of each state
vanishes.

In order to confirm that A, is indeed a gauge field, we must study the gauge transformation.
The gauge parameter is expanded at the first level:

i dPk
|A) = W/W(A(k) by k) + ). (13.91)

Note that b_ |{) is the SL(2,C) ghost vacuum. Since

D /
Qp|A) = \/_/ ‘21 )'; (k) ( \/%k2b_1co+kua’il> |k, 1), (13.92)

matching the coefficients in (13.29) gives
0A, = —ik, A, 6B = k*). (13.93)

This is the appropriate transformation for a U(1) gauge field.
Finally, one can derive the action; for simplicity, we work in the Siegel gauge. We consider
only the tachyon component:

IT) = / (g )’“D T(k)ey |k, 0) (13.94)
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with ¢; |0) = |[{). The BPZ conjugate and Hermitian conjugates are respectively:

(T| = / %T(k)(—k,ﬂc_l, (13.95a)
D
(TH = / (;r—)’j)T(k)*(k,m c_1. (13.95b)

since ¢! = c_; when using the operator I~ in (21.107). Imposing equality of both leads to
the reality condition
T(k)* =T(-k), (13.96)

which agrees with the fact that the tachyon is real (the integration measure changes as
dPk — —dPk, but the contour is reversed).
Then, the action reads:

Sir1= 3 [ o T (¥ - 3 ) 70 (13.97)

This shows that the action is canonically normalized as it should for a real scalar field.
Similarly, one can compute the action for the gauge field:

sl =5 / %AH(—k)sz”(k). (13.98)

The correct normalization of the tachyon (real scalar field of negative mass) gives a justification

a posteriori for the normalization of the action (13.14). Typically, string field actions are

normalized in this way, by requiring that the first physical spacetime fields has the correct

normalization. Note how this implies the correct normalization for all the others physical

fields. Generalizing this computation for higher-levels, one always find the kinetic term to be:
+

LTO = %(k2 +m?), (13.99)

which is the canonical normalization.

Computation — Equation (13.97)

1 [ dPk dP¥ o
<T| COLO |T> = a W W T(k)T(k )(-k ,0| C_1COLOC1 |k, 0>

1 dPk  dPk
=% ) @op @np T(k)T(k')(e'k* — 1){=k',0] c_1coc1 |, 0)
1 [ dPk

=] @ APk T(k)T (k) ('K — 1) 6P (k + k),

where we used (0| c_1cocy [0) = 1 and (K'|k) = (27)P6P) (k + k).

13.5 Closed string

The derivation of the BRST free action for the closed string is very similar. The starting
point is the equation of motion

QRs|¥)=0 (13.100)

180



for the closed string field |¥). The difference with (13.12) is that the BRST charge Qg now

includes both the left- and right-moving sectors. In the case of the open string, the field ®

was free of any constraint: we will see shortly that this is not the case for the closed string.
The next step is to find an inner product (-, -) to write the action:

S= % (T, QpW). (13.101)

Following the open string, it seems logical to give the string field ¥ the same ghost number
as the states in the cohomology:
Ngn(¥) = 2. (13.102)

In this case, the ghost number of the arguments of (:,-) in (13.101) is Nz = 5. The ghost
number anomaly requires the total ghost number to be 6, that is:

Ngn((,-)) = 1. (13.103)

There is no other choice because Ngn(¥) must be integer. The simplest solution is to insert
one c zero-mode ¢y oOr ¢y, or a linear combination. The BRST operator Q5 contains both
LSE (see the decomposition (23.88)): the natural expectation (and by analogy with the open
string) is that the gauge fixed equation of motion (to be discussed below) should be equivalent
to the on-shell equation L] = 0 (see also Section 23.3.4). This is possible only if the insertion
is ¢; . With this insertion, (-,-) can be formed from the BPZ product:

(4,B) =(A|c; |B). (13.104)

Then, the action reads:
1
S = 3 (Yo @B |Y). (13.105)

However, the presence of c; has a drastic effect because it annihilates part of the string
field. Decomposing the Hilbert space as in (22.174)

H=H Sc,H, H™ :=HNkerb,, (13.106)
the string field reads:
O) =[O )45 [T), O, U_e¥H, (13.107)
such that
co |¥) =cq W), (13.108)

The problem in such cases is that the kinetic term may become non-invertible. This motivates
to project out the component ¥_ by imposing the following constraint on the string field:

by |¥) = 0. (13.109)

The constraint (13.109) is stronger than the constraint L; = 0 for states in the cohomology
(Section 23.3.1), so there is no information lost on-shell by imposing it. For this reason, we
will also impose the level-matching condition:

Ly |¥) =0, (13.110)

such that
VeH NkerL;. (13.111)

This will later be motivated by studying the propagator and the off-shell scattering amplitudes.
To avoid introducing more notations, we will not use a new symbol for this space and keep
implicit that ¥ € ker L; .
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The necessity of this condition can be understood differently. We had found that it is
necessary to ensure that the closed string parametrization is invariant under translations along
the string (Section 4.2.2). Since there is no BRST symmetry associated to this symmetry,
one needs to keep the constraint.? This suggests that one may enlarge further the gauge
symmetry and interpret (13.109) as a gauge fixing condition. This would be quite desirable:
one could argue that a fundamental field should be completely described by the Lagrangian
(if such a description exists) and that it should not be necessary to supplement it with
constraints imposed by hand. While this can be achieved at the free level, this idea runs into
problems in the presence of interactions (Section 9.3.1) and the interpretation is not clear.?

The action (13.105) is gauge invariant under:

) — [¥) = [T) +65|T), 0 |T)=Qgr|A), (13.112)
where the gauge parameter has ghost number 1 and also lives in H™ Nker L, :
Ngn(A) =1, Ly |A) =0, by |A) = 0. (13.113)

As for the open string, the gauge invariance (13.112) can be gauge fixed in the Siegel
gauge:
bl |T) = 0. (13.114)

Then, the action reduces to:
1 _ 1 _
S = 3 (Tleged Ly |¥) = 1 (¥| coto L |P) . (13.115)
The equation of motion is equivalent to the on-shell condition as expected:
LE ) =o0. (13.116)

Additional constraints must be imposed to ensure that only the physical degrees of freedom
propagate.

Computation — Equation (13.115)
o Qe = (co — &) (coLo + SoLo) = coo(Lo + Lo).

13.6 Summary

In this chapter, we have shown how the BRST conditions defining the cohomology can be
interpreted as an equation of motion for a string field together with a gauge invariance. We
found a subtlety for the closed string due to the ghost number anomaly and because of the
level-matching condition. Then, we studied several basic properties in order to prove that
the free action has the expected properties.

The next step is to add the interactions to the action, but we don’t know first principles
to write them. For this reason, we need to take a detour and to consider off-shell amplitudes.
By introducing a factorization of the amplitudes, it is possible to rewrite them as Feynman
diagrams, where fundamental interactions are connected by propagators (which we will find
to match the one in the Siegel gauge). This can be used to extract the interacting terms of
the action.

2Yet another reason can be found in Section 4.2.2 (see also Section 23.3.4): to motivate the need of the
ba’ condition, we could take the on-shell limit from off-shell states because L(')" is continuous. However, the
L, operator is discrete and there is no such limit we can consider [299]. So we must always impose this
condition, both off- and on-shell.

3A recent proposal can be found in [219].
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13.7 References

o The free BRST string field theory is discussed in details in [299] (see also [151, chap. 7,

152, chap. 9, 283, chap. 11]). Shorter discussions can be found in [316, 236, sec. 4, 308,
5, 298].

« Spacetime fields and actions are discussed in [296, 236, sec. 4].
o Gauge fixing [179, 296, sec. 6.5, 7.2, 7.4, 5, 166, sec. 2.1, 6, 36].

o General properties of string field (reality, parity, etc.) [5, 317].
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Chapter 14

Closed string field theory

We bring together the elements from the previous chapters in order to write the closed string
field action. We first study the gauge fixed theory before reintroducing the gauge invariance.
We then prove that the action satisfies the BV master equation meaning that closed SFT is
completely consistent at the quantum level. Finally, we describe the 1PI effective action.

14.1 Closed string field expansion

In Chapters 7, 9 and 10, constraints on the external and internal states were found to be
necessary. But, to provide another perspective and decouples the properties of the field from
the ones of the state, we assume that the string field does not obey any constraint. They
will be derived later in order to reproduce the scattering amplitudes from the action and to
make the latter well-defined.

The string field is expanded on a basis {¢,} of the CFT Hilbert space H (see Section 7.2
for more details)

1) =" 6r) - (14.1)

Using the decomposition (7.45) of the Hilbert space according to the ghost zero-modes, the
string field can also be expanded as

UEDY (%m |P1er) + Yitr [Bur,r) + Y1y [Drsr) + Pt [11,r) ), (14.2)

T

where we recall that the basis states satisfy

boléyyr) =boldpr) =0,  bolpyr,r) =Coldyr,r) =0,

i ) (14.3)
colpryr) =bolpryr) =0,  coldrrr) = Coldrrr) =0.

We recall the definition of the dual basis {¢¢} through the BPZ inner product
(PS|dps) = Ors. (14.4)
In terms of the ghost decomposition, the components of the dual states satisfy:

<¢i¢,r| Co = <¢i|,,r| EO = 07 <¢iT,r| Co = <¢iT,r| 50 = 0’
<¢’(]:*J,,r| bo = <¢E]Z*J,,r| 60 = 07 <¢$T,r| bO = <¢‘T“[‘,7‘| bo = 07 (14'5)
< g,r|¢yys> = 6wy5rs,
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where x,y =l{,1,{T, 1. The spacetime ghost number of the fields v, is defined by
Gr) =2 —n,. (14.6)
Remember that the ghost number of the basis states are denoted by

n, = Ngh((ﬁr), nﬁ = Ngh(qﬁﬁ) =6— Ny (14.7)

14.2 Gauge fixed theory

Having built the kinetic term (Chapter 12), one needs to construct the interactions. For
the same reason — our ignorance of SFT first principles — that forced us to start with the
free equation of motion to derive the quadratic action (Chapter 13), we also need to infer
the interactions from the scattering amplitudes. Preparing the stage for this analysis was
the goal of Chapter 10, where we introduced the factorization of amplitudes to derive the
fundamental interactions.

Scattering amplitudes are expressed in terms of gauge fixed states since only them are
physical. This allows to give an alternative derivation of the kinetic term by defining it as
the inverse of the propagator, which is well-defined for gauge fixed states.! The price to
pay by constructing interactions in this way is that the SF'T action itself is gauge fixed. To
undercover its deeper structure it is necessary to release the gauge fixing condition. In view
of the analysis of the quadratic action in Chapter 13, we can expect that the BV formalism
is required. Another possibility is to consider directly the 1PI action.

In this section, we first derive the kinetic term by inverting the propagator. For this to
be possible, the string field must obey some constraints: we will find that they correspond to
the level-matching and Siegel gauge conditions. Then, we introduce the interactions into the
action.

14.2.1 Kinetic term and propagator
In Chapter 10, it was found that the propagator reads (10.41):

_ 1 . _ 1 .
A=biby Tx 0 0 Are=(8710500 T3 01;0190)- (14.8)
0 0
The most natural guess for the kinetic term is
1 1
SO,2 = 5 <\IJ| K |\Ij> = 5 "pTKrsws (14'9)
where
ot _ — 7+
K =cyegLyg 51:(;,0 Krs =(¢r| ¢y cg Lg 5Lg,o |¢s) - (14.10)

Indeed, it looks like KA = 1 using the identities coibgE ~ 1 and it matches (13.115). In terms
of the holomorphic and anti-holomorphic modes, we have

1 _
K= 3 cOcOLgaLo_ﬁ. (14.11)

But, when writing coibgE ~ 1, the second part of the anti-commutator {ba—L, c(jf} =1is
missing. The relation cgtb(jf ~ 1 is correct only when acting on basis dual states annihilated by

IThis step is not necessary because the propagator corresponding to the plumbing fixture (Section 10.2.2)
matches the one found in Section 13.5 by considering the simplest gauge fixing. However, this would have
been necessary if the factorization had given another propagator, or if the structure of the theory was more
complicated, for example for the superstring.
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coi. The problem stems from the fact that ¥ is not yet subject to any constraint. Moreover,
some of the string field components will not appear in the expression since they are annihilated
by the ghost zero-mode. As a consequence, the kinetic operator in (14.10) (or equivalently
the propagator) is not invertible in the Hilbert space H because its kernel is not empty:

ker K3 # 0. (14.12)

This can be seen by writing ¢, as a 4-vector and K, as a 4 X 4-matrix:

Brurl\" [cotoLg 0 0 0\ [|fyss)
1 {(ur,r] 0 0 0 0] |Ilput,s)
Kps = - ; sl 14.13
AR 0 00 0]l (14.13)
<¢TT,T| 0 000 |¢TT,S>

The matrix is mostly empty because the states ¢, , with different z =|{, 1,1, 11 are
orthogonal (no non-diagonal terms) and the states with z #|| are annihilated by ¢ or ¢o.
The same consideration applies for the delta-function: if the field does not satisfy L, =0,
then the kinetic operator is non-invertible.

To summarize the string field must satisfy three conditions in order to have an invertible
kinetic term

Ly |¥)=0, b, |¥)=0, bl |¥) =0. (14.14)
This means that the string field is expanded on the Ho Nker L, Hilbert space:
10) = tuur [0r)- (14.15)
T

Tll-defined kinetic terms are expected in the presence of a gauge symmetry: this was already
discussed in Sections 13.1.4 and 13.5 for the free theory, and this will be discussed further
later in this chapter for the interacting case.

Computation
Let’s check that K., is correctly the inverse of A,; when ¥ is restricted to Ho:

— c -1 c
K, sAg = <¢'r‘| =) chgéLgyo |¢S><¢s| ba_bo L_+ 6La,() |¢t>
0

_ _ 1 c
=(¢rlcq CSFLSF‘SLg,ob(J)rbo I+ 5Lg,o %)
0

=(drl{cg by Heg b5 } 19%)
= <¢T|¢§> = Ort.

The second equality follows from the resolution of the identity (7.36): due to the
zero-mode insertions, the resolution of the identity collapses to a sum over the || states

1= 1) (B8] = D 1b10r) (85,01 (14.16)

The third equality uses that Lar commutes with the ghost modes, that ¢, is annihilated
by boi, and that (517 0)2 = 5,—; o = 1 on states with Lg =0.
0’ 0

Finally, we find that the kinetic term matches the classical quadratic vertex Vp o defined
in (10.56) such that

1 1
So2 = 3 Vo,2(¥?) = 3 (U] cgchgdLg,O |T) . (14.17)
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14.2.2 Interactions

The second step to build the action is to write the interaction terms from the Feynman rules.
Before proceeding to SF'T, it is useful to remember how this works for a standard QFT.

Example 14.1 — Feynman rules for a scalar field
Consider a scalar field with a standard kinetic term and a n-point interaction:

S = /dDa: (% ¢(z)(—0% + m?)¢(z) + %qﬁ(m)") : (14.18)

First, one needs to find the physical states, which correspond to solutions of the
linearised equation of motion. In the current case, they are plane-waves (in momentum
representation):

br(z) = e* 2. (14.19)

Then, the vertex (in momentum representation) V,,(ki,..., k) is found by replacing
in the interaction each occurrence of the field by a different state, and summing over
all the different contributions. Here, this means that one considers states ¢y, () with
different momenta:

Vn(kl, .. akn) = %/denl Hqsk@(x) — )\/deei(k1+"~+kn)z
' i=1

=A2m)P 8P (ky + -+ - + ky).

(14.20)

The factor n! comes from all the permutations of the n states in the monomial of order
n. Reversing the argument, one sees how to move from the vertex V,,(k1, ..., k,) written
in terms of states to the interaction in the action in terms of the field.

Obviously, if the field has more states (for example if it has a spin or if it is in a
representation of a group), then one needs to consider all the different possibilities. The
above prescription also yields directly the insertion of the momentum necessary if the
interaction contains derivatives.

In Section 10.2, the Feynman rule for a g-loop n-point fundamental vertex of states
("1, ..., ¥,) was found to be given by (10.33):

Y

vg,n(%,...,vfn)=/ W (A, V) = (14.21)
R o

g,n

n

where R, ,, is a section over the fundamental region V, , C My, (8.42b) which cannot be
covered from the plumbing fixture of lower-dimensional surfaces.

From the example Example 14.1, it should be clear that the g-loop n-point contribution
to the action can be obtained simply by replacing every state with a string field in Vg »:

g2g—2+n

S n

Sg,n = h? nl ng(\I’ ) (1422)
where U™ := ¥®" The power of the coupling constant has been reinstated: it can be

motivated by the fact that it should have the same power as the corresponding amplitude
(Section 4.1.1). Note that the interactions are defined only when the power of g; is positive:
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Xgn =2 —2g —n < 0. We have also written explicitly the power of &, which counts the
number of loops.

Before closing this section, we need to comment on the effect of the constraints (14.14)
on the interactions. Building a Feynman graph by gluing two m- and n-point interactions
with a propagator, one finds that the states proportional to ¢ , for  #|| do not propagate
inside internal legs

1,
vg,m(%; ey Vm—la ¢T)<¢$| bE)i_bO L_+ |¢s> Vg’,n(%a ey Wn—la ¢s)
0
c 1 c
= Vg,m(%? R Vm—l, ¢J,J,,T)<¢J,J,,r| bE)i_bO L_+ |¢J,¢,s> Vg’,n(Wh SRR Wn—h ¢¢l,s) (1423)
0

Thus, they do not contribute to the final result even if the interactions contain them. While
the conditions L, = b, = 0 were found to be necessary for defining off-shell amplitudes, the
condition bar = 0 does not arise from any consistency requirement. But, it is also consistent
with the interactions, since only fundamental vertices have a chance to give a non-vanishing
result for states which do not satisfy (14.14). Hence, the interactions (14.22) are compatible
with the definition of the kinetic term and the restriction of the string field.

14.2.3 Action

The interacting gauge-fixed action is built from the kinetic term Vy 2 (14.17) and from the
interactions Vg, (14.22) with x4, < 0. However, this is not sufficient: we have seen in
Section 10.3 that it makes sense to consider the vertices with x4, > 0. First, we should
consider the 1-loop cosmological constant Vi o. Then, we can also add the classical source
Vo,1 and the tree-level cosmological constant Vg o. With all the terms together, the action

reads:
2g—2+n

— 9s n
S = gz;o 79 Z—— Vg n(T")
= 14.24
]. — + + / g ggg_2+n n ( )
=5 (Ul ey Loy o [¥) + D 1 =V n(T7).

g,n2>0

where V,, was defined in (10.58). A prime on the sum indicates that the term g = 0,n = 2 is
removed, such that one can single out the kinetic term. We will often drop the delta function
imposing L, = 0 because the field are taken to satisfy this constraint.

Rewriting the vertices in terms of the products £, ,, defined in (10.65)

Von(¥") = (T cy |lgn-1(T"1)) (14.25)

leads to the alternative form

2g9—2+n
s=3 hggsTomcg [€gn_1(T™1)). (14.26)
g,n>0 )

The definition (10.56) leads to the following explicit expression for £ 1:
€071(‘I/C1) = C(—)i_Lg_ |\Ifc1> . (1427)

In most cases, the terms g = 0,n = 0,1 vanish such that the action reads:

929—2+n
S=>hn T Vo (T7). (14.28)

g,n>0
Xg,n <0
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However, we will often omit the condition x,4, < 0 to simplify the notation, except when the
distinction is important, and the reader can safely assumes Vp o = Vo1 = 0 if not otherwise
stated. The classical action is obtained by setting i = 0:

1 _ gs n
Sa = 5 (Vall LT |Wa) + ; T Von(T0). (14.29)

Rescaling the string field by g;! gives the more canonical form of the action (using the
same symbol):

1

S= Z hig3o—? al Vgn(¥")
e | (14.30)
1 - 1§ (hge)* '
= (Ul eged LE o o [) + = > =2 Vo n(T7).
2 0% “~09L-,0 2 9,
295 0 gsg’nzo n!
In the path integral, the action is divided by % such that

S 2\g—1 1 n
7= (hg) Tt =V (T7). (14.31)

g,n>0

This shows that there is a single coupling constant /g2, instead of two (h and g, separately)
as it looks at the first sight. This makes sense because g; is in fact the expectation value
of the dilaton field (3.166) and its value can be changed by deforming the background with
dilatons [23, 24, 241].

The previous remark also allows to easily change the normalization of the action, for
example, to perform a Wick rotation, to normalize canonically the action in terms of spacetime

fields, or reintroduce h. Rescaling the action by « is equivalent to rescale g2 by a~!:

S—>aS = g% %. (14.32)
The linearized equation of motion is:
L |0) =0, (14.33)

which corresponds to the Siegel gauge equation of motion of the free theory (13.116). Hence,
this equation is not sufficient to determine the physical states (cohomology of the BRST
operator, Chapter 23), as discussed in Chapter 13, and additional constraints must be
imposed. One can interpret this by saying that the action (14.24) provides only the Feynman
rules, not the physical states. Removing the gauge fixing will be done in Sections 14.3
and 14.4.

The action (14.24) looks overly more complicated than a typical QFT theory: instead
of few interaction terms for low n (n < 4 in d = 4 renormalizable theories), it has contact
interactions of all orders n € N. The terms with g > 1 are associated to quantum corrections
as indicate the power of /i, which means that they can be interpreted as counter-terms.
But, how is it that one needs counter-terms despite the claim that every Feynman graphs
(including the fundamental vertices) in SFT are finite? The role of renormalization is
not only to cure UV divergences, but also IR divergences (due to vacuum shift and mass
renormalization). Equivalently, this can be understood by the necessity to correct the
asymptotic states of the theory, or to consider renormalized instead of bare quantities.
Indeed, the asymptotic states obtained from the linearized classical equations of motion are
idealization: turning on interactions modify the states. In typical QFTs, these corrections
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are infinite and renormalization is crucial to extract a number; however, even if the effect
is finite, it is needed to describe correctly the physical quantities [305]. There is a second
reason for these additional terms: when relaxing the gauge fixing condition, the path integral
is anomalous under the gauge symmetry, and the terms with g > 0 are necessary to cancel
the anomaly (this will be discussed more precisely in Section 14.4). It may thus seem that
SEF'T cannot be predictive because of the infinite number of counter-terms. Fortunately,
this is not the case: the main reason for the loss of predictability in non-renormalizable
theory is that the renormalization procedure introduces an infinite number? of arbitrary
parameters (and thus making a prediction would require to have already made an infinite
number of observations to determine all the parameters). These parameters come from the
subtraction of two infinities: there is no unique way to perform it and thus one needs to
introduce a new parameter. The case of SFT is different: since every quantity is finite, the
renormalization has no ambiguity because one subtracts two finite numbers, and the result is
unambiguous. As a consequence, renormalization does not introduce any new parameter and
there is a unique coupling constant g in the theory, which is determined by the tree-level
cubic interaction. The coupling constants of higher-order and higher-loop interactions are all
determined by powers of g5, and thus a unique measurement is sufficient to make predictions.

Another important point is that the action (14.24) is not uniquely defined. The definition
of the vertices depends on the choice of the local coordinates and of the stub parameter
so. Changing them modifies the vertices, and thus the action. But, one can show that the
different theories are related by field redefinitions and are thus equivalent.

14.3 Classical gauge invariant theory

In the previous section, we have found the gauge fixed action (14.24). Since the complete
gauge invariant quantum action has a complicated structure, it is instructive to first focus
on the classical action (14.29). The full action is discussed in Section 14.4.

The gauge fixing is removed by relaxing the bO+ = 0 constraint on the field (the other
constraints must be kept in order to have well-defined the interactions). The classical field
U, is then defined by:

Uy €H NkerLy,  Ngun(¥a)=2. (14.34)

The restriction on the ghost number translates the condition that the field is classical, i.e.
that there are no spacetime ghosts at the classical level. The relation (14.6) implies that all
components have vanishing spacetime ghost number.

In the free limit, the gauge invariant action should match (13.105)

1
So,2 = B (¥]cy QB |7). (14.35)

and lead to the results from Section 13.5. A natural guess is that the form of the interactions
is not affected by the gauge fixing (the latter usually modifies the propagator but not the
interactions). This leads to the gauge invariant classical action:

1 _ 1 s n
Sa =5 (Bl Qp [a) + 5 3 %2 Vo (W), (14.36)
S p>3

where the vertices Vy ,, with n > 3 are the ones defined in (10.33) (we consider the case
where Vo0 = Vo1 = 0). It is natural to generalize the definition of Vo as:

VO,Q (\Ilgl) = <\Ilcl| CO_QB |\Ilcl> (1437)

2In practice, this number does not need to be infinite to wreck predictability, it is sufficient that it is very
large.
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such that

Sl P ;gs Vo (¥a1) g ,%:2.2:' (er| ¢y |€0,n—1(‘1f21_1)>, (14.38)
where (14.37) implies:
£0,1(¥a) = Qg |Ya) - (14.39)
The equation of motion is
-1
FaWa) = 37 % o, (1) = @5 [Wa) + 3 % o (¥) = 0. (14.40)
n>1 n! n>2

Computation — Equation (14.40)

5\IIC1|cO [0,n—1(T51). (14.41)
9s n>2

5SC1 2 Z ’I‘L{&\Ifcl, \If }0 = l2 Z
n! gs n>2

The first equality follows because the vertex is completely symmetric. Simplifying and
shifting n, one obtains ¢, |Fc1). The factor ¢y is invertible because of the constraint
b, = 0 imposed on the field.

The action is invariant

0ASa =0 (14.42)
under the gauge transformation
gs n
=3 % b a (W 0) = Q) + 30 o (U5,4). (14.43)
n>0 n>1

The gauge algebra is [317, sec. 4]:
+
(085> 0A;|We1 = OA (AL, A0, 00) | Pe1) + Z ol Co,n+3 (U0, A2, Ar, Fa(Ta)), (14.44a)
n>0

where F; is the equation of motion (14.40), and A(A1, As, Uy) is a field-dependent gauge
parameter:

n+
AA1, A2, 0) = Z L ,

n>0

= gs Lo,2(A1, A2) +Z f0n+2(A1,A2’ o)-

n>1

(A17 A27 \Ifgl)

(14.44b)

The classical gauge algebra is complicated which explains why a direct quantization (for
example through the Faddeev—Popov procedure) cannot work: the second term in (14.44a)
indicates that the algebra is open (it closes only on-shell), while the first term is a gauge
transformation with a field-dependent parameter. As reviewed in Appendix C.3, both
properties require using the BV formalism for the quantization, and the latter is performed
in Section 14.4. An important point is that if the theory had only cubic interactions, i.e. if

Vn>4: Voa(",..., %) =0, Lyn—1("1y- s V1) =0, (cubic theory), (14.45)

then the algebra closes off-shell and A(A1, Ag, ¥.) becomes field-independent.
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Computation — Equation (14.42)

n—2 m+n—1
oaSe =Y B Vo (60, U ) = B Vot (o mes (37, 4), ¥3)
n>2 ) m,n>0 T
gt _ _
=23 Gy (Emmna (VT M) €5 Mo (V).
m>0n=0

For simplicity we have extended the sum up to n = 0 and m = 0 by using the fact that
lower-order vertices vanish. The bracket can be rewritten as

= (o.n(TD)] g [fom-nsr (TG, )
= Vo,m—n+2(Lo,n(T5), ¥ 7", A)

= Vom-ni2(A, £ (T2), T2

= (Alcg [€o,m—nt1(Con(¥H), ¥T~™)).

Then, one needs to use the identity (defined for all m > 0)

m

which comes from (10.70). Multiplying this by g™ !/m! and summing over m > 0
proves (14.42).

Remark 14.1 (Lo, algebra) The identities satisfied by the products £y ,, from the gauge
invariance of the action implies that they form a Lo, homotopy algebra [91, 207, 317] (for
more general references, see [131, 133, 180, 181]). The latter can also be mapped to a BV
structure, which explains why the BV quantization Section 14.4 is straightforward. This
interplay between gauge invariance, covering of the moduli space, BV and homotopy algebra
is particularly beautiful. It has also been fruitful in constructing super-SFT.

14.4 BV theory

As indicated in the previous section (Section 14.3), the classical gauge algebra is open and
has field-dependent structure constants. The BV formalism (Appendix C.3) is necessary to
define the theory.

In the BV formalism, the classical action for the physical fields is extended to the quantum
master action by solving the quantum master equation (C.120). It is generically difficult
to build this action exactly, but the discussion of Section 13.3 can serve as a guide: it was
found that the free quantum action (with the tower of ghosts) has exactly the same form as
the free classical action (without ghosts). Hence, this motivates the ansatz that it should be
of the same form as the classical action (14.36) to which are added the counter-terms from
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(14.24):

1 g”
S= g_2 Z h9g3e Z n_s| Vn(¥") (14.47a)
8 9>0 n>0
1 _ ! h992g_2+n n
=3 (V] cy @B |¥) + Z —Sn! Vyn (T (14.47b)
g,n>0
1 ﬁ9929_2+" _ e
rl Z sn! (¥ ¢y |lgn-1(T"H)), (14.47¢)
5 g,n>0

but without any constraint on the ghost number of ¥:
VeH NkerL;. (14.48)

In order to show that (14.47) is a consistent quantum master action, it is necessary to
show that it solves the master BV equation (C.120):

(S,8) — 2hAS = 0. (14.49)

The first step is to introduce the fields and antifields. In fact, because the CFT ghost number
induces a spacetime ghost number, there is a natural candidate set.
The string field is expanded as (14.1)

) =>4 lgr), (14.50)

where the {¢,} forms a basis of %~. The string field can be further separated as:
U=y, +V_, (14.51)

where ¥_ (U,) contains only states which have negative (positive) cylinder ghost numbers
(this gives an offset of 3 when using the plane ghost number):

U= ea e, W= byl v (14.52)
T ne<2 r ni>2

The order of the basis states and coeflicients matter if they anti-commute. The sum in ¥
can be rewritten as a sum over n, < 2 like the first term since n, + n& = 6. Correspondingly,

the spacetime ghost numbers (14.6) for the coefficients in ¥_ (¥, ) are positive (negative)
G") >0, G(yr) <O. (14.53)
Moreover, one finds that the ghost numbers of ¢" and v} are related as:
) = -1 - GW), (14.54)

which also implies that they have opposite parity. Comparing with Appendix C.3, this shows
that the ¢" (1) contained in ¥_ (¥, ) can be identified with the fields (antifields).

Computation — Equation (14.54)

G(2) =2 — Nan(by ¢9) =2+ 1 — ¢
—3—(6-n,) =3+ (2 - G¥") = -1 - GW").
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In terms of fields and antifields, the master action is

OrS O0LS OrOLS
RO TLY 4 ZROLE . (14.55)
oYr Oy OYroYy
Plugging the expression (14.47) of S inside and requiring that the expression vanishes order
by order in g and n give the set of equations:

aRSgh”l ng,nz aRaLS_q—l,n _

91,9220 mn1,m22>0
g1+g2=g nit+nz=n

where S, ,, was defined in (14.22). This holds true due to the identity (10.70) (the complete
proof can be found in [317, pp. 42-45]). The fact that the second term is not identically zero
means that the measure is not invariant under the classical gauge symmetry (anomalous
symmetry): corrections need to be introduced to cancel the anomaly. It is a remarkable fact
that one can construct directly the quantum master action in SFT and that it takes the
same form as the classical action.

14.5 1PI theory

The BV action is complicated: instead, it is often simpler and sufficient to work with the 1PI
effective action. The latter incorporates all the quantum corrections in 1PI vertices such that
scattering amplitudes are expressed only in terms of tree Feynman graphs (there are no loops
in diagrams since they correspond to quantum effects, already included in the definitions of
the vertices).

A 1PI graph is a Feynman graph which stays connected if one cuts any single internal
line. On the other hand, a 1PR graph splits in two disconnected by cutting one of the line.
The scattering amplitudes A, ,, are built by summing all the different ways to connect two
1PI vertices with a propagator: diagrams connecting two legs of the same 1PI vertex are
forbidden by definition.

The g-loop n-point 1PR and 1PI Feynman diagrams are associated to some regions of the
moduli space M, ,,. Comparing the previous definitions with the gluing of Riemann surfaces
(Section 8.3), 1PR diagrams are obtained by gluing surfaces with the separating plumbing
fixture (Section 10.1.1). Thus, the 1PR and 1PI regions F,°F and V,7! can be identified
with the regions defined in (8.43a) and (8.43b). In particular, the n-point 1PI interaction is
the sum over g of the g-loop n-point 1PI interactions (10.63):

Yo
VP (n, =Y (hg)? VR (N, ),
920 (14.57)
%I,
g?“
1P wMgn(q//la- ,’Vn),

where RIE is a section of Py, over VIEL.
Given the interactions vertices, it is possible to follow the same reasoning as in Sections 14.2
and 14.3.
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The gauge fixed 1PI effective action reads:
Sipr = Z 95 V() = <\1/|cg SLE W) + Z 95 R D! (14.58)
n>0 $ n>0

Here, the prime means again that the term g = 0,n = 2 is excluded from the definition of
VIPL. The action has the same form as the classical gauge fixed action (14.29), which is
logical since it generates only tree-level Feynman graphs. For this reason the vertices V!
have exactly the same properties as the brackets V ,,. This fact can be used to write the
1PI gauge invariant action:

Sipr = <\1/| 5 Qp ) + Z 95 11P1(gmy (14.59)
n>0 '

which mirrors the classical gauge invariant action (14.36). Then it is straightforward to see
that it enjoys the same gauge symmetry upon replacing the tree-level vertices by the 1PI
vertices. But, since this action incorporates all quantum corrections this also proves that the
quantum theory is correctly invariant under a quantum gauge symmetry.

Remark 14.2 The 1PI action (14.59) can also be directly constructed from the BV action
(14.47).

14.6 References

o Gauge fixed and classical gauge invariant closed SFT [317] (see also [170, 171]).
e BV closed SFT [317] (see also [299]).

« Construction of the open—closed BV SFT [319].

« 1PISFT [261, 262, 57, sec. 4.1, 5.2].
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Chapter 15

Witten’s cubic string field theory

Witten’s string field theory is an open SFT which arises from the open BV SFT by a specific
parametrization of the cubic vertex. It distinguishes itself among all possible SFT by two
facts. First it is cubic (and thus polynomial): all interactions {®"} with n > 4 vanish, which
makes it particularly simple to study. From the Riemann surface perspective this means
that the moduli space of any surface can be entirely covered from the plumbing fixture of
3-punctured spheres. Secondly there is an axiomatic formulation of this theory based on an
analogy with Chern—Simons theory.

In this section we consider an open string theory defined by a given boundary CFT
(BCFT).

15.1 Axiomatic formulation

The theory is formulated in terms of a non-commutative *-product

AxB# BxA. (15.1)
The product of n identical elements is also written as a power
A" :=Ax---xA. (15.2)
—_—
n times
The action reads 1
§=-3 (2,Qp®) - % (B,® D). (15.3)

where g, is the open string coupling.
The variation of the action reads:

08 =—(09,QpP) — g, (6,D + D). (15.4)
The equations of motion are
Qp®+@*=0 (15.5)
and the gauge transformation is
60 = QP + go[®, A, (15.6)
where
[A,B] = AxB— BxA. (15.7)
This transformation can be exponentiated to
®—d =% (Qp+d) xet. (15.8)
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Chapter 16

Background independence

Spacetime background independence is a fundamental property of any candidate quantum
gravity theory. In this chapter, we outline the proof of background independence for the
closed SFT by proving that the equations of motion of two background related by a marginal
deformation are equivalent after a field redefinition.

16.1 The concept of background independence

Background independence means that the formalism does not depend on the background — if
any — used to write the theory. A dependence in the background would imply that there is a
distinguished background among all possibilities, which seems in tension with the dynamics
of spacetime and the superposition principle from quantum mechanics. Moreover, one would
expect a fundamental theory to tell which backgrounds are consistent and that they could
be derived instead of postulated. Background independence allows spacetime to emerge as a
consequence of the dynamics of the theory and of its defining fundamental laws.

Background independence can be manifest or not. In the second case, one needs to fix a
background to define the theory, but the dynamics on different backgrounds are physically
equivalent.! This implies that two theories with different backgrounds can be related, for
example by a field redefinition.

While fields other than the metric can also be expanded around a background, no difficulty
is expected in this case. Indeed, the topic of background independence is particularly sensible
only for the metric because it provides the frame for all other computations — and in particular
for the questions of dynamics and quantization. Generally, these questions are subsumed
into the problem of the emergence of time in a generally covariant theory. In the previous
language, QFTs without gravity are (generically) manifestly background independent after
minimal coupling.? For example, a classical field theory is defined on a fixed Minkowski
background and a well-defined time is necessary to perform its quantization and to obtain
a QFT, but it is not needed to choose a background for the other fields. For this reason,
the extension of a QFT on a curved background is generally possible if the spacetime is
hyperbolic, implying that there is a distinguished time direction. But the coupling to gravity
is difficult and restricted to a (semi-)classical description.

What is the status of background independence in string theory? The worldsheet
formulation requires to fix a background (usually Minkowski) to quantize the theory and
to compute scattering amplitudes. Thus, the quantum theory is at least not manifestly

IThis does not mean that the physics in all backgrounds are identical, but that the laws are. Hence, a
computation made in one specific background can be translated into another background.
2However, non-minimal coupling terms may be necessary to make the theory physical.
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background independent. On the other hand, the worldsheet action can be modified to
a generic CFT including a generic non-linear sigma model describing an arbitrary target
spacetime. Conformal invariance reproduces (at leading order) Einstein equations coupled to
various matter and gauge field equations of motion. From this point of view, the classical
theory can be written as a manifestly background independent theory, and this provides
hopes that the quantum theory may be also background independent, even if non-manifestly.
This idea is supported by other definitions of string theory (e.g. through the AdS/CFT
conjecture — and other holographic realizations — or through matrix models) which provide,
at least partially, background independent formulations.

Ultimately, the greatest avenue to establish the background independence is string field
theory. Indeed, the form of the SFT action and of its properties (gauge invariance, equation
of motion. ..) are identical irrespective of the background [282]. This provides a good starting
point. The background dependence enters in the precise definition of the string products
(BRST operator and vertices). The origin of this dependence lies in the derivation of the
action (Chapters 10 and 14): one begins with a particular CFT describing a given background
(spacetime compactifications, fluxes, etc.) and defines the vertices from correlation functions
of vertex operators, and the Hilbert space from the CFT operators. As a consequence,
even though it is clear that no specific property of the background has been used in the
derivation — and that the final action describes SFT for any background —, this is not sufficient
to establish background independence. Since the theory assumes implicitly a background
choice, one cannot guarantee that the physical quantities have no residual dependence in
the background, even if the action looks superficially background independent. Background
independence in SFT is thus the statement that theories characterized by different CFTs can
be related by a field redefinition.

In this chapter, we will sketch the proof of background independence for backgrounds
related by marginal deformations.® It is possible to prove it at the level of the action [280,
281], or at the level of the equations of motion [274]. The advantage of the second approach
is that one can use the 1PI theory, which simplifies vastly the analysis. It also generalizes
directly to the super-SFT.

Remark 16.1 (Field theory on the CFT space) As mentioned earlier, the string field
is defined as a functional on the state space of a given CFT and not as a functional on the
field theory space (off-shell states would correspond to general QFTs, only on-shell states are
CFTs). In this case, background independence would amount to reparametrization invariance
of the action in the theory space, and would thus almost automatically hold. A complete
formulation of SFT following this line is currently out of reach, but some ideas can be found
in [511].

16.2 Problem setup

Given a SFT on a background, there are two ways to describe it on another background:
e deform the worldsheet CF'T and express the SFT on the new background;

 expand the original action around the infinitesimal classical solution (to the linearised
equations of motion) corresponding to the deformation.

Background independence amounts to the equivalence of both theories up to a field redefinition.
The derivation can be performed at the level of the action or of the equations of motion. To
prove the background independence at the quantum level, one needs to take into account the
changes in the path integral measure or to work with the 1PI action.

3An alternative approach based on morphism of Lo, algebra is followed in [207].
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The simplest case is when the two CF'Ts are related by an infinitesimal marginal defor-
mation

A _
5Scft = % /d2z (P(Z,Z), (161)

with ¢ a (1,1)-primary operator and X infinitesimal. The two CFTs are denoted by CFT;
and CFT,, and quantities associated to each CFTs is indexed with the appropriate number.

Establishing background independence in this case also implies it for finite marginal
deformation since they can be built from a series of successive deformations. In the latter
case, the field redefinition may be singular, which reflects that the parametrization of one
CFT is not adapted for the other (equivalently, the coordinate systems for the string field
breaks down), which is expected if both CFTs are far in the field theory space.

Remember the form of the 1PI action (14.59):

1 (1, /1 .
Si[¥] = 232 (T1]cgQB1T1) + o Ve |, (16.2)
8 n>0

where the prime indicates that vertices with n < 3 do not include contributions from the
sphere. In all this chapter, we remove the index 1PI to lighten the notations. The equation
of motion is:

Fi() = Qs [00) + 3 - £a(8) =0. (16.3)

16.3 Deformation of the CFT

Consider the case where the theory CFT; is described by an action Sc¢: 1[11] given in terms
of fields ;. Then, the deformation of this action by (16.1) gives an action for CFT5:

Sete,2[V1] = Sese,1[1] + % /d22 o(z,z). (16.4)

Correlation functions on a Riemann surface ¥ in both theories can be related by expanding
the action to first order in A in the path integral:

<1:[ Oi(zi,Zi)> <exp (—%/szq)(z, 2)) E[Oi(zi,zi)> (16.5a)

1

<]_:_[(9i(zi,2i)>1—%/zd2z <go(z,2)1:_[(’)i(zi,2i)> . (16.5b)

1

Q

where the O; are operators built from the matter fields ;. This expression presents two
obvious problems. First, the correlation function may diverge when ¢ collides with one of the
insertions, i.e. when z = z; in the integration. Second, there is an inherent ambiguity: the
correlation functions are written in terms of operators in the Hilbert space of CFT;, which
is different from the CFT9 Hilbert space, and there is no canonical isomorphism between
both spaces.

Seeing the Hilbert space as a vector bundle over the CFT theory space, the second
problem can be solved by introducing a connection on this bundle. This allows to relate
Hilbert spaces of neighbouring CFTs. In fact, the choice of a non-singular connection also
regularizes the divergences.

The simplest definition of a connection corresponds to cut unit disks around each operator
insertions [41, 242, 243, 256, 290]. This amounts to define the variation between the two
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correlation functions as:

(5<HO,(ZZ,51)> =—% E_U'gzz <<p(z,Z)H(9i(zi,Zi)> . (166)

44 '3

The integration is over ¥ minus the disks D; = {|w;| < 1} where w; is the local coordinate
for the insertion O;. The divergences are cured because  never approaches another operator
since the corresponding regions have been removed. The changes in the correlation functions
induce a change in the string vertices denoted by §V, (¥4, ..., 7).

The next step consists in computing the deformations of the operator modes. Since it
involves only a matter operator, the modes in the ghost sector are left unchanged. The
Virasoro generators change as:

dz - dz
L, = = gl z L, = f{ = gnl Z). 16.

) )\7|{z|:1 ot 2 o(z, 2), ) A o ol 2 o(z, 2) (16.7)

As a consequence, the BRST operator changes as

dz _ dz _,_ _
Qs =Af TeAf R0 (16.8)
One can prove that

{@B,0QB} = 0()?) (16.9)

such that the BRST charge Qg + dQp in CFT; is correctly nilpotent if Qg is nilpotent in
CFT;.

For the deformation to provide a consistent SF'T, the conditions b, = 0 and L; = 0 must
be preserved. The first is automatically satisfied since the ghost modes are not modified.
Considering an weight-(h, h) operator O, one finds

5Ly |0) = )\7{ dz 2Y T 0,,) — /\?{ dz Y 22712771 0,,),  (16.10)
p,q I p,q

|z|=1 2mi z|=1 2mi
where O, 4 are the fields appearing in the OPE with ¢:
0(2,2)0(0,0) = > 2P712771 0, 4(0,0). (16.11)
X

The terms with p # ¢q vanish because the contour integrals are performed around circles of
unit radius centred at the origin. Moreover, the terms p = ¢ are identical and cancel with
each other, showing that 6L, = 0 when acting on states satisfying L, = 0.

The SFT action S3[¥4] in the new background reads

Sz[\Ifl] =95 [\IJ1] + 65 [\111] (16.12)

where the change §.5; in the action is induced by the changes in the string vertices:

5$i10] = = | 5 (Wil ey 9 + > L ovap) |- (16.13)
The equation of motion is:
F2(¥1) = Fi(¥1) + A6F1(¥4) =0, (16.14)
where Fj is given in (16.3) and
AGF1(1) = 6Qp |T1) + 3 % 50, (T, (16.15)
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16.4 Expansion of the action

Given a (1,1) primary ¢, a BRST invariant operator is ccp. Hence the field
[¥1) = A[Po), |Wo) = c1¢1(0) |p) (16.16)

is a classical solution to first order in A since the interactions on the sphere are at least cubic.
Separating the string field as the contribution from the (fixed) background and a fluctua-

tion ¥’
1) = A [To) + [T, (16.17)

the action expanded to first order in A reads:

S1[¥4] = S1[Po] + S'[¥'], (16.18)
where
S'[¥'] = l2 (1 (¥]cgQp )+ i, (Vu(T™) 4+ AVn11 (o, \II’"))) . (16.19)
gz \2 — n!
The equation of motion is:
F'(¥') := F(¥')+ A6F' (') =0, (16.20)
where F7 is given in (16.3) and
SF (W)=Y % Cn1 (To, T™). (16.21)

n

16.5 Relating the equations of motion

In the previous section, we have derived the equations of motion for two different descriptions
of a SFT obtained after shifting the background: (16.14) arises by deforming the CFT and
computing the changes in the BRST operator and string products, while (16.20) arises by
expanding the SF'T action around the new background. The theory is background independent
if both sets of equations (16.14) and (16.20) are related by a (possibly field-dependent) linear
transformation M (') after a field redefinition of ¥y = ¥, (¥’):

F1(¥1) + A0F1(¥1) = (1+ AIM(T)) (F1(T') + A6F (), (16.22a)
|T1) = [T') + A [6T'). (16.22b)

The zero-order equation is automatically satisfied. To first order, this becomes

SR 40| 5F(W) — 6F (W) = ME)F (V). (16.23)

A=0

Taking ¥’ to be a solution of the original action removes the RHS, such that:

1
AQ ) + A Y — s (B, 9™) + 6Q5 [¥)
" . (16.24)
+ D () =AY — g (To, U) = 0.
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To simplify the computations, it is simpler to consider the inner product of this quantity
with an arbitrary state A (assumed to be even):
A= X{A|c;Qp|6T') + A Z [ Vnaa(A4,00,0") +(4] 5 6Qp | V')

(16.25)
+ Z 5 Vi (4,77) - AZ [ Vna(A, T, ™).

The goal is to prove the existence of ¥’ such that A = 0 up to the zero-order equation of
motion F1(¥’) =0.

16.6 Idea of the proof

In this section, we give an idea of how the proof ends, referring to [274] for the details.
The first step is to introduce new vertices V; ; and V,, parametrizing the variations of
the string vertices:

(A]¢58Qp |B) = AV} 5(Wo, B, A),  SV,(I™™) = AV, 1 (To, U™, (16.26)

where the notation (9.19) has been used. Each subspace V, ,, is defined such that the LHS is
recovered upon integrating the appropriate wy ,, over this section segment. Next, the field
redefinition 6%’ is parametrized as:

1
(Alcg |69y =" — Bna(%o, ", A). (16.27)

The objective is to prove the existence (and if possible the form) of the subspaces Bji2.
Both the vertices V), and B,, admit a genus expansion:

=> Vi Bu=) By (16.28)
g>0 g>0

Plugging the new expressions in (16.25) give:

1
A= Z  Bnr2(To, ¥, QpA) + Z 1 Boy2 (Yo, U, £n 41 (4, 0))
(16.29)
+Z WHA%WLEjMMM%Wﬂ

Next, the BRST identity (9.46) and the equation of motion F;(¥’) = 0 allow to rewrite the
first term as:

Bri2(To, ¥, QpA) = 0B, 12(Vo, U™, A) +n B, 1o(Vo, U1, Qp¥’, A) (16.30a)
n — m
= 0B i2(Vo, U™, A) = ) — Bria(To, ¥ Ll (T'™), A).

m

(16.30b)
In the second term, the sum over n is shifted. Combining everything together gives:
1 n 1 n m
A= Zﬁ 0B 12(To, U™, A) = Y — 1 Bra(Wo, U, £ ('), A)

1 . N
+ Z min! Bn+2(“1’07 \I’ n+1 \I’/ )) + Z V7/1+2 A \I’O, \IJ/ ) (16.31)

—Z [ Vn2(A4, W0, ).
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Solving for A = 0 requires that each term with a different power of ¥’ vanishes independently:
8Bn+2 (\IJO’ \Ijmv A) = ’:L+2(A’ \IJ07 \I/m) + Vn+2 (A, \IIOa \Pm)

n!
+ Z W Bm1+3 (\IJ()) \Ijlm1’em2(\:[,/m2)’ A)
iy = (16.32)

n!
=D gt B2 (Yo, Ul (4, 979)).

my,m2z
mi+me=n

In order to proceed, one needs to perform a genus expansion of the various spaces: this
allows to solve recursively for all B, ,, starting from By 3. One can then build |§¥’) recursively,
which provides the field redefinition. Indeed, the RHS of this equation contains only By
for ¢ < g or n’ < n and the equation for By 3 contains no By, in the RHS. It should
be noted that the field redefinition is not unique, but there is the freedom of performing
(infinite-dimensional) gauge transformations. Finding an obstruction to solve these equations
mean that the field redefinition does not exist, and thus that the theory is not background
independent

The form of the equation

0By3 =Vo3— V3 (16.33)

suggests to use homology theory. The interpretation of By 3 is that it is a space interpolating
between Vo3 and V; ;. A preliminary step is to check that there is no obstruction: since the
LHS is already a boundary one has 8?Bj 3 = 0 and one should check that (RHS) = 0 as
well. It can be shown that it is indeed true. It was proved in [274] that this equation admits
a solution and that the equations for higher g and n can all be solved. Hence, there exists a
field redefinition and SF'T is background independent.

16.7 References

e Proof of the background independence under marginal deformations [274, 280, 281]
(see also [255, 256, 258] for earlier results laying foundations for the complete proof).

e L, perspective [207, sec. 4] (see also [206, 205, sec. IIL.B].
o Connection on the space of CFTs [41, 242, 243, 256, 290].
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Part IV

Superstring theory
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Chapter 17

Superstring

Superstring theory is generally the starting point for physical model building. It has indeed
several advantages over the bosonic string, most importantly, the removal of the tachyon
and the inclusion of fermions in the spectrum. The goal of this chapter is to introduce the
most important concepts needed to generalize the bosonic string to the superstring, both for
off-shell amplitudes and string field theory. We refer to the review [57] for more details.

17.1 Worldsheet superstring theory

There are five different superstring theories with spacetime supersymmetry: the types I, ITA
and IIB, and the Eg x Eg and SO(32) heterotic models.

In the Ramond-Neveu—Schwarz formalism (RNS), the left- and right-moving sectors of
the superstring worldsheet are described by a two-dimensional super-conformal field theory
(SCFT), possibly with different numbers of supersymmetries. The prototypical example is
the heterotic string with N = (1,0) and we will focus on this case: only the left-moving
sector is supersymmetric, while the right-moving is given by the same bosonic theory as in
the other chapters. Up to minor modifications, the type II theory follows by duplicating the
formulas of the left-moving sector to the right-moving one.

17.1.1 Heterotic worldsheet

The ghost super-CFT is characterized by anti-commuting ghosts (b, c) (left-moving) and (b, )
(right-moving) with central charge ¢ = (—26, —26), associated to diffeomorphisms, and by
commuting ghosts (3,7) with central charge ¢ = (11, 0), associated to local supersymmetry.
As a consequence the matter SCFT must have a central charge ¢ = (15,26). If spacetime has
D non-compact dimensions, then the matter CFT is made of:

o a free theory of D scalars X* and D left-moving fermions ¢¥* (u=0,...,D — 1) such
that cfree = 3D/2 and ¢gree = D;

e an internal theory with ¢, = 15 — 3D /2 and ¢y = 26 — D.

The critical dimension is reached when c¢;,; = 0 which corresponds to D = 10.
The diffeomorphisms are generated by the energy—momentum tensor 7T'(z); correspond-
ingly, supersymmetry is generated by its super-partner G(z) (sometimes also denoted by
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Tr). The OPEs of the algebra formed by T'(z) and G(z) is:

c/2 + 2T (w) +(9T(w)

T(2)T(w) ~ 17.1
T~ g+ ot e (17.1)
2¢/3 2T (w)
~ 17.1
CEGW) ~ s + oms: (17.1)
3 G(w) 0G(w)
T ~ = . 17.1
(GW) ~ 5 s ) (171¢)
The superconformal ghosts form a first-order system (see Section 22.2) with e = —1 and
A = 3/2. Hence, they have conformal weights
3 1
w6 = (3.0).  we=(-3.0) (7.2)
and OPEs 1 1
~— ~ — . 17.
HBW) ~ ——, Blw) - (17.3)
The expressions of the ghost energy—momentum tensors are
T8 = —2b0c+ cdb, TP = g By + %786. (17.4)
The ghost numbers of the different fields are
Ngn(b) = Ngn(B) = —1,  Ngn(c) = Ngn(7) = 1. (17.5)

The worldsheet scalars satisfy periodic boundary conditions. On the other hand, fermions
can satisfy anti-periodic or periodic conditions: this leads to two different sectors, called
Neveu-Schwarz (NS) and Ramond (R) respectively.

B~y system

The 7 system can be bosonized as
y=mne®, B=0¢e?, (17.6)

where (£,n) are fermions with conformal weights 0 and 1 (this is a first-order system with
e =1and A = 1), and ¢ is a scalar field with a background charge (Coulomb gas). This
provides an alternative representation of the delta functions:

s(y)=e?  6(B)=e¢’. (17.7)
Introducing these operators is necessary to properly define the path integral with bosonic

zero-modes. They play the same role as the zero-modes insertions for fermionic fields needed
to obtain a finite result (see also Appendix C.1.3):

/dCo =0 = /dCO co=1, (17.8)

because ¢y = d(cg). For a bosonic path integral, one needs a delta function:

/d’yo =00 = /d'yo d(v) =1. (17.9)
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By definition of the bosonization, one has:

TP =T 4 T, (17.10)
where 1
T" =-—no¢, T¢= -5 (0¢)% — 0%¢. (17.11)
The OPE between the new fields are:
1 elar+a2)é(w) 1
~ np(z)ga2d(w) 2~ b ~——. (17.12
£(2)n(w) 2 —w € € (z —w)ne’ 0¢(2)0¢(w) (z —w)? ( )

The simplest attribution of ghost numbers to the new fields is:
Ngn(n) =1,  Ne(§)=-1,  Ng(¢)=0. (17.13)

To the scalar field ¢ is associated another U(1) symmetry whose quantum number is
called the picture number Npi.. The picture number of 7 and ¢ are assigned’ such that
and v have Ny = 0:

Npic(€®®) =g,  Npie(€) =1,  Npic(n) = —1. (17.14)

Because of the background charge, this symmetry is anomalous and correlation functions are
non-vanishing if the total picture number (equivalently the number of ¢ zero-modes) is:

Npic =2(g — 1) = —xg- (17.15)
For the same reason, the vertex operators e?® are the only primary operators:
h(e??) = —g(q +2), (17.16)
and the Grassmann parity of these operators is (—1)9. Special values are
M) =2, he?) =g (17.17)

The superstring theory features a Zs symmetry called the GSO symmetry. All fields are
taken to be GSO even, except 8 and ~ which are GSO odd and e?® whose parity is (—1)9.
Physical states in the NS sector are restricted to be GSO even: it is required to remove the
tachyon of the spectrum and to get a spacetime with supersymmetry. In type II, the Ramond
sector can be projected in two different ways, leading to the type ITA and type IIB theories.

The components of the BRST current are:

1
i = c(T™ +TP) + 4G + bcdc — i +2b, (17.18a)
jp = eI™ + beoe. (17.18b)
From there, it is useful to define the picture changing operator (PCO):
1 1
X(2) = {QB,&(2)} = cOE + %G — 20n e b — 100 e2%b), (17.19)

which is a weight-(0,0) primary operator which carries a unit picture number. It is obviously
BRST exact. This operator will be necessary to saturate the picture number condition: the
naive insertion of e? ~ §(53) breaks the BRST invariance. The PCO zero-mode is obtained

from the contour integral:
1 dz
o) 2
It can be interpreted as delocalizing a PCO insertion from a point to a circle, which decreases
the risk of divergence.

X(2). (17.20)

! Any linear combination of both U(1) could have been used. The one given here is conventional, but also
the most convenient.
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17.1.2 Hilbert spaces

The description in terms of the (1, £, ¢) fields leads to a subtlety: the bosonization involves
only the derivative 9¢ and not the field £ itself, meaning that the zero-mode &q is absent from
the original Hilbert space defined from (8,~). In the bosonized language, the Hilbert space
without the £ zero-mode is called the small Hilbert space and is made of state annihilated by
1o (the 1 zero-mode)

Heman = { ) | m0 [¢)) = 0}. (17.21)

Removing this condition leads to the large Hilbert space:*
7'lsmall = Hlarge N ker No- (1722)

A state in Hgmay contains € with at least one derivative acting on it.

A correlation function defined in terms of the (7, &, @) system is in the large Hilbert space
and will vanish since there is no £ factor to absorb the zero-mode of the path integral. As a
consequence, correlation functions (and the inner product) are defined with a &y insertion
(by convention at the extreme left) or, equivalently, £(z). The position does not matter since
only the zero-mode contribution survives, and the correlation function is independent of z.
Sometimes it is more convenient to work in the large Hilbert space and to restrict later to
the small Hilbert space.

The SL(2,C) invariant vacuum is normalized as

(k| c_1E_1c080c181 €2 K'Y = (2m)P6 D) (k + K'). (17.23)

Remark 17.1 (Normalization in type II) In type II theory, the SL(2,C) is normalised
as: -
(k| c_1E_1c080c181 € 2P e=¢@) By = —(2m)P6DP) (k + K. (17.24)

The sign difference allows to avoid sign differences between type II and heterotic string
theories in most formulas [57].

The Hilbert space of GSO even states satisfying the b, = 0 and L, = 0 conditions is
denoted by Hr (ghost and picture numbers are arbitrary). This Hilbert space is the direct
sum of the NS and R Hilbert spaces:

Hr = Hns © Hr.- (17.25)

The subspace of states with picture number Npi. = n is written #,,. The picture number of
NS and R states are respectively integer and half-integer. Two special subspaces of Hr play
a distinguished role:

Hr=H10H 15, Hr=H_10H g, (17.26)
To understand this, consider the vacuum |p) of the ¢ field with picture number p:
lp) = €#%(0) |0). (17.27)
Then, acting on the vacuum with the 3, and 7, modes implies
V> -p-2: Balp)=0,

2 (17.28)
‘v’n2p+§: Yn |p) = 0.

2The relation between the small and large Hilbert spaces is similar to the one between the H and
Ho = boH Hilbert space from the open string since the (b, c) and (1, £) are both fermionic first-order systems.
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For p = —1, all positive modes (starting with n = 1/2) annihilate the vacuum in the NS
sector. This is a positive asset because positive modes which do not annihilate the vacuum
can create states with arbitrary negative energy (since it is bosonic).® For p = —1/2 or
p = —3/2, the vacuum is annihilated by all positive modes, but not by one of the zero-mode
7o or By. Nonetheless, one can show that the propagator in the R sector allows to propagate
only a finite number of states if one chooses H_;/2; the role of H_3/, will become apparent
when discussing how to build the superstring field theory.
Basis states are introduced as in the bosonic case:

#Hr = Span{|¢,)},  Hr = Span{|¢5)} (17.29)
such that
<¢1c"|¢s> = Ops. (1730)
The completeness relations are
1= ¢ )(9f] (17.31)
ﬁT, and
1= (-1 |ge) (¢ (17.32)
on Hr.

Finally, the operator G is defined as:

1 N
G = S sector, (17.33)
Xo R sector.
Note the following properties
6, L5 = 16,b7] = [9,@Q5] = 0. (17.34)

It will be appear in the propagator and kinetic term of the superstring field theory.

17.2 Off-shell superstring amplitudes

In this section, we are going to build the scattering amplitudes. The procedure is very similar
to the bosonic case, except for the PCO insertions and of the Ramond sector. For this reason,
we will simply state the result and motivate the modifications with respect to the bosonic
case.

17.2.1 Amplitudes

External states can be either NS or R: the Riemann surface corresponding to the g-loop
scattering of m external NS states and n external R states is denoted by 3y 1, . R states must
come in pairs because they correspond to fermions. As in the bosonic case, the amplitude is
written as the integration of an appropriate p-form Q,(,g ™) over the moduli space Mg m n
(or, more precisely, of a section of a fibre bundle with this moduli space as a basis). From

the geometric point of view, nothing distinguishes the punctures and thus:
Mg m,n = dim Mg, = 6g — 6 4 2m + 2n. (17.35)

The form Qy, ,, . is defined as a SCFT correlation function of the physical vertex operators
together with ghost and PCO insertions.

3This is not a problem on-shell since the BRST cohomology is independent of the picture number.
However, this matters off-shell since such states would propagate in loops and make the theory inconsistent.
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Remark 17.2 A simple way to avoid making errors with signs is to multiply every Grass-
mann odd external state with a Grassmann odd number. These can be removed at the end to
read the sign.

The two conditions from the U(1) anomalies on the scattering amplitude are:
Ngn =6—6g,  Npic =29 — 2. (17.36)
Given an amplitude with m NS states %NS € H_1 and n R states ”I/jR € H_1/2, the above
picture number can be reached by introducing a certain number of PCO X (y4):

n
Npeo =29 —2+m + 5 (17.37)

These PCO are inserted at various positions: while the amplitude does not depend on these
locations on-shell, off-shell it will (because the vertex operators are not BRST invariant).
The choices of PCO locations are arbitrary except for several consistency conditions:

1. avoid spurious poles (Section 17.2.3);

2. consistent with factorization (each component of the surface in the degeneration limits
must saturate the picture number condition).

This parallels the discussion of the choices of local coordinates: as a consequence, the
natural object is a fibre bundle P, ,, ,, with the local coordinate choices (up to global phase
rotations) and the PCO locations as fibre, and the moduli space Mg ., ,, as base. Forgetting

about the PCO locations leads to a fibre bundle ’ﬁg,m,n which is a generalization of the one
found in the bosonic case. The coordinate system of the fibre bundle presented in the bosonic
case is extended by including the PCO locations {y4}.

With these information, the amplitude can be written as:

Ag (VNS 7R = / Qu, .. (7S, 7R, (17.380)
Sg m,n

where
M, = (—20) Mo < /\ By dt, H X(ya H“//NS H 7/R> (17.38b)
= j=1 Syom

where Sy is a Mg m n-dimensional section of ’Isg,m,n parametrized by coordinates ¢). The
1-form B corresponds to a generalization of the bosonic 1-form. It has ghost number 1 and
includes a correction to compensate the variation of the PCO locations in terms of the moduli
parameters:

daa 1 doa —— Fa = 1
- (07 F o
Br= Zj{ 27r1 o (o ) +Z}{ 271'1 8t>\ ( (@ ))
=3 ) ot O
X(ya) N
The last factor amounts to consider the combination

X(ya) — 0&(ya) dya (17.40)

for each PCO insertion:* the correction is necessary to ensure that the BRST identity (9.46)
holds. This can be understood as follows: the derivative acting on the PCO gives a term
dX(z) = 0X(z)dz which must be cancelled. This is achieved by the second term since
{Qz,06(2)} = DX (2).

4The sum is formal since it is composed of 0- and 1-forms.

(17.39)
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Remark 17.3 While it is sufficient to work with Mgy, for on-shell bosonic amplitudes,

on-shell superstring amplitudes are naturally expressed in Py m n (with the local coordinate
removed) since the positions of the PCO must be specified even on-shell.

Remark 17.4 (Amplitudes on the supermoduli space) Following Polyakov’s appro-
ach from Chapters 3 and 4 to the superstring would lead to replace the moduli space by the
supermoduli space. The latter includes Grassmann-odd moduli parameters in addition to the
moduli parameters from Mg yn (in the same way the superspace includes odd coordinates 6
along with spacetime coordinates x). The natural question is whether it is possible to split
the integration over the even and odd moduli, and to integrate over the latter such that only
an integral over Mg m1rn remains. In view of (17.38a), the answer seems positive. However,
this is incorrect: it was proven in [75] that there is no global holomorphic projection of
the supermoduli space to the moduli space. This is related to the problem of spurious poles
described below. But, this does not prevent to do it locally: in that case, implementing the
procedure carefully should give the rules of vertical integration [90, 263, 278].

17.2.2 Factorization

The plumbing fixture of two Riemann surfaces X4, m, n, and Xy, m, n, can be performed in
two different ways since two NS or two R punctures can be glued.

If two NS punctures are glued, the resulting Riemann surface is &
The number of PCO inherited from the two original surfaces is

(NS)
g1tg2,mi1+ma—2,n1+n2"

_l’_
”x(alcz) + n§)26)0 =2(g1+9g2) =2+ (M1 +m2—2)+ % - nggg)’ (17.41)

which is the required number for a non-vanishing amplitude. As a consequence, the propagator
is the same as in the bosonic case:

1

Ans =050 77

5(Lg).- (17.42)

If two R punctures are glued, the numbers of PCO do not match by one unit:

ny+ng —2
2

This means that an additional PCO must be inserted in the plumbing fixture procedure:
the natural place for it is in the propagator since this is the only way to keep both vertices
symmetric as required for a field theory interpretation. Another way to see the need of this
modification is to study the propagator (17.42) for Ramond states: since Ramond states
carry a picture number —1/2, the conjugate states have Npic = —3/2 and thus the propagator
has a total picture number —3 instead of —2 (the propagator graph is equivalent to a sphere).
Then, to avoid localizing the PCO at a point of the propagator, one inserts the zero-mode
which corresponds to smear the PCO:

(1)

nSoy +nh = 2(g1 + g2) — 2+ (my + ma) + —1=n 1. (17.43)

Xo

An=boby 77

0(Lg)- (17.44)
Delocalizing the PCO amounts to average the amplitude over an infinite number of points (i.e.
to consider a generalized section): this is necessary to preserve the L eigenvalue since &) is
rotationally invariant while X'(z) is not. Note that the zero-mode can be written equivalently
as a contour integral around one of the two glued punctures:

1 dw,(f) (1) 1 dw,(f) @)
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The equality of both expressions holds because X(z) has conformal weight 0.
Using the operator G (17.33), the propagator can be written generically as

g

A:b+b_—_
0o Lo+ Ly

Ly ). (17.46)
Remark 17.5 (Propagators) NS and R states correspond respectively to bosonic and
fermionic fields: the operators L; and Xy can be interpreted as the (massive) Laplacian and
Dirac operators, such that both propagators can be written

1 i+ m

ANS ~ T e R R m?

(17.47)

To motivate the identification of Xy with the Dirac operator, remember that X(z) contains a
term e?(*)G(2) (this is the only term which contributes on-shell), where G(2) in turn contains
Y, 0X". But, the zero-modes of ¥, and O0X* correspond respectively to the gamma matriz
~* and momentum k* when acting on a state.

The PCO zero-mode insertion inside the propagator has another virtue. It was noted
previously that states with Npic = —3/2 are infinitely degenerate since one can apply By
an arbitrary number of time. These states have large negative ghost numbers. Considering
a loop amplitude, all these states would appear in the sum over the states and lead to a
divergence. The problem is present only for loops because the ghost number is not fixed: in
a tree propagator, the ghost number is fixed and only a finite number of 8y can be applied.
But, the PCO insertion turns these states into Npic = —1/2 states. In this picture number,
one cannot create an arbitrarily large negative ghost number since ' can only increase the
ghost number.

17.2.3 Spurious poles

A spurious pole corresponds to a singularity of the amplitude which cannot be interpreted as
the degeneration limit of Riemann surfaces. As a consequence, they do not correspond to
infrared divergences and don’t have any physical meaning; they must be avoided in order to
define a consistent theory. To achieve this, the section Sy, » must be chosen such that it
avoids all spurious poles. However, while it is always possible to avoid these poles locally, it
is not possible globally (this is related to the results from [75]). Poles can be avoided using
vertical integration: two methods have been proposed, in the small (Sen-Witten) [263, 278]
and large (Erler—-Konopka) [90] Hilbert spaces respectively. Before describing the essence of
both approaches, we review the origin of spurious poles.

Origin
Spurious poles arise in three different ways:
e two PCOs collide;
e one PCO and one matter vertex collide;
e other singularities of the correlation functions.

The last source is the less intuitive one and we focus on it.
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A general correlation function of (n,£,$) on the torus® (satisfying the ghost number
condition) reads

n+1 n m
C(xi,yj,zq) = <H &(xy) H n(yj) H eqzc¢(zlc)>

i=1 j=1 k=1

T195(—wy + o= Sus+ Sawas) I Blwsa) T Blysuy)
Jj'= i J i j

<3’ i<j’

= X .
n+1 E(z;,y; E(zy, z¢)9%9
Hﬂs(—x¢/+2$i—2yj+2q1czk) H ( J)lge (2, 2)
=1 J k

%

(17.48)
The additional £ insertion is necessary since it provides the £ zero-mode, the correlation
function being defined in the large Hilbert space. On the torus, the picture numbers must
add to zero and thus the charges g satisfy

> g =0. (17.49)
k
The function E(z,y) is called the prime form and is a generalization of the function z — y on
te torus: 9 ( )
I\r—y

Its presence ensures that C vanishes or diverges appropriately when the operators collide (i.e.
that the zeros and poles of C are the expected ones from the OPE). The theta functions are
used to make sure that the correlation function satisfies the appropriate boundary conditions
(specified by the spin structure §) for each cycle of the surface.

However, theta functions can also vanish and the ones in the denominator lead to
additional singularities (not implied by any OPE) for the correlation function. Since z; can
be chosen arbitrarily, the only theta function which can have poles is

n+1 n

1‘}5(in - Zyj +quzk) =0. (17.51)
i=2 =1 k=1

This defines a complex codimension 1 curve in ﬁg,m,n, depending on the vertex and PCO
locations, but also on the moduli parameters (appearing in the definition of the theta
function). On the other hand, it does not depend on the local coordinate choice. If the
section Sy intersects this curve, it will be ill-defined (even on-shell).

From this formula, several comments can be made. If an operator inserted at z contains
ne fields ¢, n,, fields n and a factor eP?, then the dependence in z of the theta function is of
the form (ng —ny, 4+ p)z = Npicz. Then, if the PCO locations are chosen as to avoid spurious
poles for a given operator, this will also avoid them for any operator of the same picture
number. This also implies that insertion of 5 and 7 cannot lead to spurious poles since they
have Ny = 0; this is important since they appear in the BRST current, thus insertion of
the latter cannot lead to new poles.

Since it is always possible to choose locally a distribution of PCO to avoid spurious
poles, the idea is to discretize the moduli space in small pieces. But, since the PCO cannot
be distributed continuously along the different components of the moduli space, correction
terms are required. These can be generated in two different ways in both the small and large
Hilbert spaces. The second is more general while the first may be more adapted since it
keeps the amplitude in the small Hilbert space.

5The discussion generalizes directly to higher-genus Riemann surfaces.
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Vertical integration: large Hilbert space

Consider the n-point amplitude state (A®)| which produces an amplitude with p PCO when
contracted with n external states are specified. The BRST identity implies that the amplitude
state is closed (i.e. gauge invariant)

(AP Q =0, (17.52)

where
R=Qp®1®" 1+...+1°" 1 ®Qp. (17.53)
Moreover, this state is in the small Hilbert space which implies that it is in the kernel of 7q:
(AP|n =0, (17.54)

where
n=n0®1%" 1 4... + 18" 1 @ . (17.55)

The BRST cohomology is trivial in the large Hilbert space: thus, if (A®)| is closed, it
must be exact in this space:

(AP = (o] Q, (17.56)

where the state a®) (called gauge amplitude) must be in the large Hilbert space. This is
consistent with (A®)|n = 0 only if
(@®[nQ =0 (17.57)

(@ and n anti-commute); It is then natural to interpret the state on which @ acts as an
amplitude with one less PCO
(4P| = (o) (17.58)

since Npic(n) = —1.

Continuing this procedure leads to an amplitude (A(0)| without any PCO insertion, and
thus without spurious singularities. Consistency with the picture number anomaly requires
the external state to have non-canonical picture numbers. But, this should not be a puzzle
since the amplitude states should be viewed as intermediate object to obtain the final
amplitude.

Hence, the amplitude (A(”)| can be constructed by starting with (A(®)|: inserting &(2)
in the amplitude leads to the gauge amplitude (a(!)|, whose BRST variation yields (A®)|.
Continuing recursively helps to construct the desired amplitude. Moreover, () and £ insertions
automatically take care of the corrections at the interfaces of the components.

Showing that the amplitude is independent of the non-physical data (i.e. gauge invariance)
is trivial since it is expressed as a BRST exact expression.

Vertical integration: small Hilbert space

The section of ﬁg,m,n is given by a series of discontinuous components linked by vertical
segments. On the vertical segment, the PCO configuration interpolates continuously between
the components and the integrand can encounter a spurious pole. Since the integrand is not
a total derivative in terms of the fibre coordinates, its integration over a segment depends
on the path followed and not only on the end points. This implies that it diverges when it
encounters the spurious pole. However, there is a specific prescription which avoids these
problems. When only one PCO varies, the integrand is a total derivative of the PCO location
and can thus be integrated directly, giving a difference in the two end points. In this case,
the result is independent from the specific path and from the presence of the spurious pole.
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To be more concrete, given a PCO insertion X (y;), the variation of its location inserts a
factor —9¢(y1). Integrating this term between two components labelled by ¢ and j — keeping
everything else fixed — leads to a factor & (ygj )) £ (ygj )).

When several PCOs are involved, it is not sufficient to integrate the vertical segment
along a path where only one PCO varies at a time. Indeed, because a hole is left in the
process of the vertical integration. Additional segments must be added and integrated over.
This avoids the spurious poles and one can show that it yields a well-defined amplitude.
Moreover, it agrees with the large Hilbert space approach.

Finally, it remains to address the question of the Feynman diagrams construction. In
this case, every graph obtained by plumbing fixture inherits its PCO locations from the
lower-dimensional surfaces, and there is no control on the resulting distribution. It can be
shown that no spurious singularity is generated in the gluing process if the lower-dimensional
graphs have no spurious poles. Hence, it is sufficient to ensure that the fundamental graphs
have no spurious poles.

17.3 Superstring field theory

The construction of super-SFT has proceeded along different directions (for reviews, see [57,
88, 218]). There are two main strategies for constructing the superstring vertices:

1. brute-force construction: build the vertices recursively from amplitude factorization;
2. dress the bosonic products with superconformal ghosts.

While the second approach is simpler and preferred for explicit construction, the first allows
to derive the general structure as was done for the bosonic string. There are two main
strategies for dressing the vertices:

1. Munich construction (homotopy algebra bootstrap): use the Lo, and A, structures to
derive the superstring vertices from the bosonic vertices (small Hilbert space).

2. Berkovits’ construction (WZW action): generalize Witten’s cubic bosonic open SFT
(NS / R in large / small Hilbert space).

As indicated in parenthesis, a super-SFT can be written in the small or large Hilbert space (or
a combination). The different approaches have been shown to be equivalent at the classical
level.

The main difficulty in building a super-SFT is to properly describe the Ramond sector.
This can be done following two different approaches:

¢ constraining the Ramond string field;
e using an auxiliary string field.

Berkovits’ original SF'T cannot describe the Ramond sector in the large Hilbert space, but it
is possible to couple Berkovits’ action for the NS field in the large Hilbert space to a Ramond
field in the small Hilbert space. Another limitation of Berkovits’ approach is that it works
only for the open and heterotic superstrings (but not for type II).

We assume that the problems with PCO are absent (in Berkovits’ and supermoduli
constructions) or that they have been defined using vertical integration.

In the rest of this chapter, we will discuss the kinetic term for each of the first three
approaches. At the level of the free action, the open and heterotic super-SFT differs only in
the bosonic factors as in Chapter 13.
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17.3.1 String field and propagator
As in the bosonic case, it is natural to consider a string field gathering all possible states

U=U_, +T ), (17.59)

where ¥_; and W_; /5 are respectively the NS and R string fields. If the field is in the small
Hilbert space, it satisfies:

1o |¥) = 0. (17.60)
The propagator was found in (17.46) to be
- G _ 1 NS
A = b+b I ——— 5 L 9 = ’ 1761
St g 8(L) G{XOR_ (17.61)
As for the bosonic case, the constraints
by |¥) =Ly |¥) =0, by |P) =0 (17.62)

must be imposed on the field to ensure that the propagator is invertible.

For similar reasons, the PCO insertion implies that the propagator is not invertible since
Xy has zero-modes: this means equivalently that it has a non-empty kernel off-shell or that
it contains derivatives. Two different solutions can be chosen to address this issue: imposing
constraints as for the level-matching condition, or introducing auxiliary fields.

17.3.2 Constraint approach

Two new PCO operators must be introduced:
X =God(Bo) +b0d'(Bo), Y =—cod (70)- (17.63)
The first operator commutes with the BRST operator
@B, X]=0. (17.64)
The product of these operators is a projector
XYX =X. (17.65)
Then, the R string field is constrained to satisfy
XY W_172) = [¥_170). (17.66)

A state satisfying this condition is said to be in the restricted Hilbert space. It can be shown
that it reproduces the cohomology of Q)5 on-shell.

Remark 17.6 Since Gy contains derivatives, the restriction is not purely algebraic as in
the bosonic case. It prevents the degeneration due to .

Remark 17.7 (Comparison with level-matching) The conditions by, = Ly =0 can be
rephrased as the statement that the string field ¥ is invariant under the action of the projector
Bcy

Bce, |¥) =|¥), (17.67)
where
_ [ de 0L - -
B =1, —e%0 =4(by)d(Lg). (17.68)
0 2
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The kinetic term (after unfixing the gauge) reads:

1 _ 1 _
S()’z = —5 <\I/_1| CO QB |\Il_1> — 5 (‘I/_1/2| CO YQB |\I/_1/2> . (17.69)
The action is invariant under the gauge transformation
§|¥) = Qs |A) (17.70)

where
A=A_1+ A_l/g. (17.71)
Each gauge parameter satisfies the same conditions as the associated field (in particular,

A_y /3 is in the restricted Hilbert space).

17.3.3 Auxiliary field approach

The disadvantage of the constraint approach is two-fold. First, it treats both components of
the field on a different footing. Second, the constraint must be imposed by hand and does
not follow from any fundamental principle. Another possibility is to embed the propagator in
a higher-dimensional field space by introducing additional fields: in this way, the propagator
can be inverted without introducing the inverse of Aj.

Let’s introduce the new field

T=U_,+T g, (17.72)
which satisfies the same conditions as ¥:
by |0) =Ly [¥) =0, b} |¥)=0. (17.73)
A tentative kinetic term is then:

1 ~ ~ ~
So2 = 5 (g LEG1¥) — (¥ g e LT W) (17.74)

The kinetic operator in matrix form for (\TI, U) reads

K=cyelLi (—lg (1)) (17.75)
and its inverse is )
_ 0 1
A=bbT— . 17.76

This reproduces the expected propagator for (¥, ¥) without needing to invert Xj.
What is the interpretation of the additional fields? The gauge invariance of the action is

5|0y =QpA), §9)=QplA), (17.77)

where A satisfies the same constraints as ¥ (in particular, it contains more components than
the A of the previous section). Then, the equations of motion are

Qs|¥) =0, Qpl¥)=0. (17.78)

This shows that both fields are free and decoupled and that the spectrum is doubled. To
push the interpretation further, one needs to consider the interactions.
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Amplitudes involve only the states contained in ¥ and thus the interactions are built
solely in terms of . Then, the equations of motion have the form:

Qz(1¥)-G1¥) =0, Qp|¥)=J(T), (17.79)

where J(P) is a source term due to the interactions. An equation for ¥ only is obtained by
multiplying the second with G
Qe |¥) =G |J(¥)). (17.80)

Once ¥ is determined by solving this equation, the auxiliary field T is completely fixed by
the second equation up to free field solutions. This shows that ¥ describes only free fields
even when ¥ is interacting. Note that this implies that the degrees of freedom contained
in ¥ do not even couple to the gravitational field! This can also be shown at the level of
Feynman diagrams.

Remark 17.8 The field T s not an auzxiliary field strictly speaking since it is propagating
(its equation of motion is not algebraic).

17.3.4 Large Hilbert space

The last formulation of the kinetic term considers the NS string field to be in the large
Hilbert space, i.e. g # 0. The Ramond field must be described with one of the two previous
approach.

Writing the action requires to use a NS field ¥ with picture number 0. The kinetic term

becomes 1
3 {(P0,mQ5¥0)), (17.81)

where ((-,-)) is the inner product in the large Hilbert space (contains a &y insertion). This
action has an enlarged gauge invariance:

So,2 =

6|¥o) = Q@B |Ao) +m0 Q1) , (17.82)

and the equation of motion reads
@smo [Yo) = 0. (17.83)

The 7y gauge invariance can be fixed with the condition
§o |¥o) =0, (17.84)
and one can introduce a new field ¥_; such that
|¥o) = &o[¥-1) (17.85)
to satisfy automatically the condition. The equation of motion becomes
Qp|Y-1) =0, (17.86)

and one recovers the small Hilbert space formulation.

17.4 References

o General reviews [57, 88, sec. 6].

e Spurious poles and vertical integration:
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— small Hilbert space [57, app. C, D, 263, 278]
— large Hilbert space [90]

e Constructions of super-SFT:

— “Sen’s” amplitude factorization construction [57, 226, 261, 262, 264, 266]
— “Munich” homotopy algebra bootstrap [91-93, 97, 162]

— Berkovits’ SFT [25, 86, 97, 166, 176, 195]

— supermoduli space [214, 294]

— democratic SFT [164, 165]

— light-cone SFT [140, 143]

« Relations between different constructions [Erler:2015: AinftyStructureBerkovits,
84, 85, 97, 137].

e Ramond string field:

— constrained field [86, 97, 176, 294]
— auxiliary field [57, 97, 262, 266]
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Part V

Spacetime string field theory

221



Chapter 18

Momentum-space SFT

In this chapter, we describe the general properties of SF'T actions in the momentum space.
This allows to make SFT more intuitive, but also to use standard QFT methods to prove
various properties of string theory. We explain how the Wick rotation is generalized for
theories with vertices diverging at infinite real energies (Lorentzian signature). This allows
to prove important properties of string theory, such as unitarity or crossing symmetry.

18.1 General form

Since the explicit expressions of the string vertices are not known, it is not possible to write
explicitly the SFT action. However, the general properties of the vertices are known: then,
one can write a general QFT which contains SFT as a subcase. This is sufficient to already
extract a lot of informations. The other advantage is that the QFT language is more familiar
and intuitive in many situations. Hence, one can use this general form to built intuition
before translating the results in a more stringy language. In a nutshell, SFT is a QFT:

o with an infinite number of fields (of all spins);

¢ with an infinite number of interactions;

« with non-local interactions oc e~ #*°;

 which reproduces the worldsheet amplitudes (if the latter are well-defined).

The non-locality of the interactions is the most salient property of SFT, beyond the
infinite number of fields. This has a number of consequences:

o the Wick rotation is ill-defined;

« the position representation cannot be used, nor any property relying on it (micro-
causality, largest time equation. .. );

« standard assumptions from local QFT (in particular, from the constructive S-matrix
program, such as micro-causality) break down.

Together, these points imply that the usual arguments from QFTs must be improved. This
has been an active topic in the recent years and the results will be summarized in Section 18.2.
We expand the string field in Fourier space using a basis {¢4(k)} as (Chapter 12):

D
Z/ ‘ k;ﬂ/)a k) |¢a(K)) (18.1)

222



where k is the D-dimensional momentum and « the discrete indices (Lorentz indices, group
representation, KK modes...) of the spacetime fields 1, (k). The action in momentum space
takes the form (in Lorentzian signature):

S = - [ aPkva(tKan(k)bs(-H)
=3 [Pk dPh VA () Y (), ().

n>0

(18.2)

The kinetic matrix K,g is usually quadratic in the momentum. In the direct Fourier
expansion of the SFT action (14.24), it describes only the classical kinetic term: the quantum
corrections are found in the vertex V(2.

From the action, we can write the Feynman rules (for the path integral weight ' and
S-matrix S =1+ iT'). The propagator reads:

1Ma

0« ——— 8 =Kap(h) =52 7 Qa(k) (18.3)

% K2+ mZ

where M, is mixing matrix for states of equal mass and @, a polynomial in k (there is
no sum over ). The interactions are obtained by plugging the basis states {@q} inside the
vertices V,, (10.58):

=iV bty ey k) o= 1V (o (B1), - - - B (Kin)
(18.4)

—gL R (@) kikj =AY m2
=1/dte “ Pal,...,an(klj---;kn;t)’

where ¢t denotes collectively the moduli parameters, Py, is a polynomial in k, g;; is a
positive-definite matrix, A > 0 is a number. There is an implicit sum over the momentum
indices.

The terms quadratic in the momenta inside the exponential arise from two sources:

o The correlation functions of the vertex operators ([], e!*#X(*)} is proportional to
e~ ki'kiG(2:2)  where G is the Green function. Additional factors like X contribute to
the polynomlal P00

o Itis poss1ble to add stubs to the vertices. The effect is to multiply each leg by a factor

e MEAMY) with A > 0 (we take X to be the same for all vertices for simplicity). The

first term of the exponential contributes to the diagonal of the matrix g;;. By taking A
sufficiently large, one can enforce that all eigenvalues are positive.

Finally, the exponential term with the masses m? ensures that the sum over all intermediate

states converge despite an infinite number of s;gates. Indeed, the number of states of mass
Mo grows as e“™= which is dominated by e~*™= for sufficiently large A. Hence, the addition
of stubs make explicit the absence of divergences in SFT.!

IRemember that X is not a physical parameter and disappears on-shell. This means that the cancellation
of the divergences is independent of A and must always happen on-shell.

223



The vertices have no singularity for k; € C finite. As the energy becomes infinite |k?| — oo,

they behave as:
lim V™ =0, lim V™ = . (18.5)

k0 —tioco k0 —+oo
The first property is responsible for the soft UV behaviour of string theory in Euclidean
signature, while the second prevents from performing the Wick rotation (indeed, the pole at
infinity implies that the arcs closing the contour contribute).
The g-loop n-point amputated Green functions are sums of Feynman diagrams, each of
the form:

Fyn(p1,-..,pn) ~ /dTHdes e~ Crs () brobe =2Hri(T) br-pi=Fig (T) pi-ps

° 1 (18.6)

x H m P(pi, r; T),
a

where {p;} are the external momenta, {£,-} the loop momenta and {k;} the internal momenta,
with the latter given by a linear combination of the other. Moreover, T' denotes the dependence
in the moduli parameters of all the internal vertices, and P is a polynomial in (p;,£4). The
matrix G, is positive definite, which implies that:

¢ integrations over spatial loop momenta £, converge;
« integrations over loop energies £ diverge.

As a consequence, the Feynman diagrams in Lorentzian signature are ill-defined: we will
explain in the next section how to fix this problem.

18.2 Generalized Wick rotation

We have seen that loop integrals in Lorentzian signature are divergent because of the large
energy behaviour of the interactions. But, this is not different from the usual QFT, where the
loop integrals are also ill-defined in Lorentzian signature. Indeed, poles of the propagators
sit on the real axis and also give divergent loop integrals (note that the same problem arise
also here). In that case, the strategy is to define the Feynman diagrams in Euclidean space
and to perform a Wick rotation: the latter matches the expressions in Lorentzian signature
up to the ie-prescription. The goal of the latter is to move slightly the poles away from the
real axis.

Example 18.1 — Scalar field

Consider a scalar field of mass m with a quartic interaction. The 1-loop 4-point Feynman
diagram is given in Figure 18.1. The external momenta are p;, ¢ = 1,...,4. There
are one loop momentum £ and two internal momenta k; = £ and ko = p — £, where
p = p1 + p2. The poles in the loop energy #° are located at:

pr =tV +m2, g =p° £ +/(p — £)2 + m2. (18.7)

The graph is first defined in Euclidean signature, where the external and loop
energies are pure imaginary, p?,#° € iR. The poles are shown in Figure 18.2. Then,
the external momenta are analytically continued to real values, p) € R. At the same
time, the integration contour is also analytically continued thanks to the Wick rotation
(Figure 18.3). The contour is closed with arcs, but they don’t contribute since there is
no poles in the upper-right and lower-left quadrants, and no poles at infinity. However,
one cannot continue the contour such that £ € R because of the poles on the real axis.
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The Wick rotation is possible for £° in the upper-right quadrant, Re° > 0,Im #° > 0,
which leads to the ie-prescription £° € R + ie.

P2

Figure 18.1: 1-loop 4-point function for a scalar field theory.

Im ¢°

=" -V | =+ o O

® X
po ==V +m? py = VO +m? Re (°

Figure 18.2: Integration contour for external Euclidean momenta.

Since the Feynman diagram (18.6) is not defined in Lorentzian signature because of the
poles at £0 — 400, it is also necessary to start with Euclidean momenta. However, the same
behaviour at infinity prevents from using the Wick rotation since the contribution from
the arcs does not vanish. It is then necessary to find another prescription for defining the
Feynman diagrams in SFT starting from the Euclidean Green functions. This is given by
the following generalized Wick rotation (Pius—Sen [230]):

1. Define the Green functions for Euclidean internal and external momenta.

2. Perform an analytic continuation of the external energies and of the integration contour
such that:

¢ keep poles on the same side;

¢ keep the contour ends fixed at ico.

One can show [230] that the Green functions are analytic in the upper-right quadrant
Imp? > 0,Rep? > 0, for p, € R, p?. Moreover, the result is independent of the contour
chosen as long as it satisfies the conditions described above. In fact, this generalized Wick
rotation is valid even for normal QFT, which raises interesting questions. For example, it
seems that the internal and external set of states have no intersection, which can be puzzling
when trying to interpret the Cutkosky rules. Nonetheless, everything works as expected.
The generalized Wick rotation for the Feynman diagram from Example 18.1 is shown in

Figure 18.4.
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ied
Re /0

Figure 18.3: Integration contour for external Lorentzian momenta after Wick rotation (regular
vertices).

Remark 18.1 (Timelike Liouville theory) It has been shown in [18] that this generalized
Wick rotation is also the correct way for defining the timelike Liouville theory.

The fact that the amplitude is analytic only when the imaginary parts of the momenta
are not zero, Imp? > 0, is equivalent to the usual ie-prescription for QFT. Moreover, it has
been shown [270] to be equivalent to the moduli space ie-prescription from [313]. Then, it
has also been used to prove several important properties of string theory shared by local
QFTs: Cutkosky rules [230, 231], unitarity [268, 269], analyticity in a subset of the primitive
domain and crossing symmetry [58]. Finally, general soft theorems for string theory (and, in
fact, any theory of quantum gravity) have been proven in [47, 182, 271, 272]. All together,
these properties establish string theory as a very strong candidate for a consistent theory of
everything. The next main question is how to obtain an expression of SF'T which is amenable
to explicit computations. This will certainly require to understand even better the deep
structure of SF'T, a goal which this review will hopefully help the reader to achieve.

18.3 References

o SFT momentum space action [57, 230, 273].
« Consistency properties of string theory [57]:
— generalized Wick rotation, Cutkosky rules and unitarity [230, 231, 267-270].

— analyticity and crossing symmetry [58].
— soft theorems [47, 182, 271, 272].
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Figure 18.4: Integration contour after analytic continuation to external Lorentzian momenta.
Depending on the values of the external momenta, different cases can happen.
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Classical solutions
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Conformal field theory
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Chapter 19

Conformal field theory in D
dimensions

Starting with this chapter, we discuss general properties of conformal field theories (CFT).
The goal is not to be exhaustive, but to provide a short introduction and to gather the
concepts and formulas that are needed for string theory. However, the subject is presented
as a standalone topic such that it can be of interest for a more general public.

The conformal group in any dimension is introduced in this chapter. The specific case
D = 2, which is the most relevant for the current review, is developed in the following
chapters.

19.1 CFT on a general manifold

In this chapter and in the next one, we discuss CFTs as QFTs living on a spacetime M,
independently from string theory (there is no reference to a target spacetime). As such, we
will use spacetime notations together with some simplifications: coordinates are written as
z* with g =0,...,D — 1 and time is written as 2° = ¢ (z° = 7) in Lorentzian (Euclidean)
signature.

19.1.1 Conformal group

Given a metric g, on a D-dimensional manifold M, the conformal group CISO(M) is the
set of coordinate transformations (called conformal symmetries or isometries)

zt — o't = z'M(x) (19.1)
which leaves the metric invariant up to an overall scaling factor:

_ Ozf 0z°
~ Oz'v Oxv
This means that angles between two vectors v and v are left invariant under the transforma-
tion:

G (z) — g, (2) 9po () = Qa") g (). (19.2)

u-v u v
—_——= (19.3)
lul [o] '] o]
It is often convenient to parametrize the scale factor by an exponential
Q:=e”. (19.4)
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Considering an infinitesimal transformation
oxt = &, (19.5)

the condition (19.2) becomes the conformal Killing equation

2
89 = Leguw = Vb + Vo€ = ; 9V €7, (19.6)

such that the scale factor is 9
02 =1+ - V,E°. (19.7)

The vector fields & satisfying this equation are called conformal Killing vectors (CKV). Con-
formal transformations form a global subgroup of the diffeomorphism group: the generators
of the transformations do depend on the coordinates, but the parameters do not (for an
internal global symmetry, both the generators and the parameters don’t depend on the
coordinates).
The conformal group contains the isometry group ISO(M) of M as a subgroup, corre-
sponding to the case Q = 1:
ISO(M) c CISO(M). (19.8)

These transformations also preserve distances between points. The corresponding generators
of infinitesimal transformations are called Killing vectors and satisfies the Killing equation

59;“/ = Eﬁg;w = vu§u + vué.u = 0. (199)

They form a subalgebra of the CKV algebra.

An important point is to be made for the relation between infinitesimal and finite
transformations: with spacetime symmetries it often happens that the first cannot be
exponentiated into the second. The reason is that the (conformal) Killing vectors may be
defined only locally, i.e. they are well-defined in a given domain but have singularities outside.
When this happens, they do not lead to an invertible transformation, which cannot be an
element of the group. These notions are sometimes confused in physics and the term of
“group” is used instead of “algebra”. We shall be careful in distinguishing both concepts.

Remark 19.1 (Isometries of M C RP*?) In order to find the conformal isometries of
a manifold M which is a subset of RP? defined in (19.12), it is sufficient to restrict the
transformations of RP? to the subset M [251]. In the process, not all global transformations
generically survive. On the other hand, the algebra of local (infinitesimal) transformations
for M and RP? are identical since M is locally like RP9.

19.1.2 Conformal field theory

How to build a conformal field theory (CFT) for some matter fields VU, i.e. a QFT on the
curved background (M, §) which is invariant under the conformal group CISO(M)?

To answer this question, we explain first how a background theory can be built from a
more general theory. A background B is a fixed field configuration which couples to the
other fields but which does not have any intrinsic dynamics. Typically, the background is a
solution to the equations of motion derived from an action Sg[B]

8Sp A
<5 B =0, (19.10)
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but this is not necessary.! One can then consider probe fields ¥ with action S, [E, 7], i.e.
fields which live on the background without disturbing it (this means that the backreaction
is neglected). If the background theory possesses a gauge symmetry, then any residual
symmetry of the background generically becomes a global symmetry of the probe action (if
the action S,[B, ¥] is invariant under the gauge symmetry). Note that in this case only the
fields ¥ transform under the symmetry.

Before considering the conformal transformations, consider first the invariance under
the isometry of the background metric § (often a solution of Einstein equations). Then, an
action S[g, ¥] which admits ISO(M) as a global symmetry can be constructed by writing a
diffeomorphism invariant action S[g, ¥] and by freezing the metric g = §. Indeed, isometries
does not change the background metric and can be used as symmetries of S, where only ¥
transforms. The rest of the diffeomorphisms are not a symmetry of the action.

The extension to CISO(M) requires more work because the conformal transformations
modify the background metric and does not directly give global symmetries of S. The
solution is to introduce an additional gauge symmetry

G () =e*@g,,(x),  V(z) =™ Y(z), (19.11)

called the (local) Weyl symmetry, where dg is the dimension of the field ¥. The group of
Weyl transformations is denoted by Weyl(M). If this is a symmetry of the original theory,
then the scaling factor (z) in front of the metric in (19.2) can be compensated with a
Weyl transformation. As a consequence, an action S[g§, U] invariant under the conformal
group CISO(M) can be obtained from an action S[g, ¥] invariant under diffeomorphisms
and Weyl transformations. Then, the conformal group can be understood as the subgroup of
the diffeomorphism which transforms the metric like a Weyl transformation. This fact has
been encountered in Chapter 3 from a different perspective.

Remark 19.2 One may want to reverse the argument by starting with S[g, V] to derive
actions S[g, V] which are invariant under diffeomorphisms and (local) Weyl transformations.
The standard procedure to construct a diffeomorphism invariant theory from S[n, @] is to
use the minimal coupling of the field ¥ by replacing derivatives with covariant derivatives.
But, not all actions S[g, ¥] can be found in this way: indeed any term in S[g, V] which
vanishes upon firing the background (for example, a term proportional to the equations of
motion if the background is a solution) cannot be recovered from the minimal coupling.

For Weyl transformations, the subject is more complicated: a necessary condition is that
S[n, ¥] be invariant under conformal transformations in flat space, but this condition is
sufficient only if the action is at most quadratic in the first derivatives. On the other hand,
global Weyl transformations require only invariance under global scale transformations. These
remarks can be important in the construction of string worldsheet theories and they are related
to Remark 3.17 page 61. Selected references on this topic are [50, 100, 189, 153, 154, 235].

Remark 19.3 (Axiomatic formulations) More aziomatic formulations are given in [245,
251].

19.2 CFT on Minkowski space

In this section, we consider the case where M = RP*? (D = p + q) and where g = 7 is the
flat metric with signature (p, g):

n = diag(—1,...,-1,1,...,1). (19.12)
——— ——

q p

IFor example, the Einstein—Hilbert action with a cosmological constant can be expanded around the
Minkowski spacetime, even if it is not a solution to the equation of motion.
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The conformal Killing equation becomes
(NuwA + (D —2)0,0,)0 - € =0, (19.13)

where A is the D-dimensional Beltrami-Laplace operator for the metric 7,,. The case D = 2
is relegated to the next chapter. For D > 2, one finds the following transformations:

translation: & =at, (19.14a
rotation & boost: & =uwt, 2", (19.14b
dilatation: &= AzH, (19.14¢

)
)
)
SCT: EH =bla? —2b- xaH, (19.14d)

where w,,,, is antisymmetric. The rotations include Lorentz transformations and SCT means
“special conformal transformation”.

All parameters {a*,w,., A\, b*} are constant. The generators are respectively denoted by
{P,,Juv, D, K, }. The finite translations and rotations form the Poincaré group SO(p, q),
while the conformal group can be shown to be SO(p+1,q + 1):

ISO(RP9) = SO(p,q),  CISO(RP?) = SO(p+1,q+1). (19.15)

The dimension of this group is

1
dimSO(p+1,9g+1) = §(p+q+2)(p+q+1). (19.16)

19.3 References

o References on higher-dimensional CFTs are [69, 240, 247, 251, 285].
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Chapter 20

Conformal field theory on the
plane

Starting with this chapter, we focus on two-dimensional Euclidean CFTs on the complex
plane (or equivalently the sphere). We start by describing the geometry of the sphere and the
relation to the complex plane and to the cylinder, in order to make contact with the string
worldsheet. Then, we discuss classical CF'Ts and the Witt algebra obtained by classifying
the conformal isometries of the complex plane. Finally, we describe quantum CFTs.

As described at the beginning of Chapter 19, we use spacetime notations for the coordi-
nates, but follow otherwise the normalization for the worldsheet. In particular, integrals are
normalized by 27w. However, the spatial coordinate on the cylinder is still written as o to
avoid confusions: z* = (7, 0).

20.1 The Riemann sphere

20.1.1 Map to the complex plane

The Riemann sphere Xy, which is diffeomorphic to the unit sphere S2, has genus g = 0 and
is thus the simplest Riemann surface. Its most straightforward description is obtained by
mapping it to the extended' complex plane C (also denoted @), which is the complex plane
z € C to which the point at infinity z = oo is added:

C=Cu{oo}. (20.1)

One speaks about “the point at infinity” because all the points at infinity (i.e. the points z
such that |z| — o0)

lim 7e' := oo (20.2)

T—>00
are identified (the limit is independent of 6).
The identification can be understood by mapping (say) the south pole to the origin of
the plane and the north pole to infinity” (Figure 20.1) through the stereographic projection

z = e'® cot g, (20.3)

IThis qualification will often be omitted.
2Note that the points are distinguished in order to write the map, but they have nothing special by
themselves (i.e. they are not punctures).
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N

Figure 20.1: Map from the Riemann sphere to the complex plane. The south and north poles
are denoted by the letter S and N, and the equatorial circle by E.

where (0, ) are angles on the sphere. Any circle on the sphere is mapped to a circle in the
complex plane. Conversely, the Riemann sphere can be viewed as a compactification of the
complex plane.

Introducing Cartesian coordinates (x,y) related to the complex coordinates by®

z =z +iy, zZ=uz — iy, (20.4a)
z2+z z2—2Z
= = 20.4b
e R AT ( )
the metric reads
ds? = dz? + dy? = dzdz. (20.5)

The relations between the derivatives in the two coordinate systems are easily found:
1 - 1
0:=0,= 2 (0 —10y), 0:=0;= 2 (0z +10y). (20.6)

The indexed form will be used when there is a risk of confusion. If the index is omitted then
the derivative acts directly to the field next to it, for example

09(21)0¢(22) := 0.,0.,¢(21)P(22). (20.7)

Generically, the meromorphic and anti-meromorphic parts of a object will be denoted without
and with a bar, see (20.57) for an example.

The extended complex plane C can be covered by two coordinate patches z € C and
w € C. In the first, the point at infinity (north pole) is removed, in the second, the origin
(south pole) is removed. On the overlap, the transition function is

w= . (20.8)
This description avoids to work with the infinity: studying the behaviour of f(z) at z = 0o
is equivalent to study f(1/w) at w = 0.
Since any two-dimensional metric is locally conformally equivalent to the flat metric, it
is sufficient to work with this metric in each patch. This is particularly convenient for the
Riemann sphere since one patch covers it completely except for one point.

3General formulas can be found in Section 5.1 by replacing (7, o) with (z,y). In most cases, the conformal
factor is set to zero (¢ = 0) in this chapter.
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20.1.2 Relation to the cylinder — string theory

The worldsheet of a closed string propagating in spacetime is locally topologically a cylinder
R x S! of circumference L. In this section, we show that the cylinder can also be mapped to
the complex plane — and thus to the Riemann sphere — after removing two points. Since
the cylinder has a clear physical interpretation in string theory, it is useful to know how to
translate the results from the plane to the cylinder.

It makes also sense to define two-dimensional models on the cylinder independently of a
string theory interpretation since the compactification of the spatial direction from R to S!
regulates the infrared divergences. Moreover, it leads to a natural definition of a “time” and
of an Hamiltonian on the Euclidean plane.

Denoting the worldsheet coordinates in Lorentzian signature by (t,0) with*

teR, o€l0,L), oc~o+ 1L, (20.9)
the metric reads
ds? = —dt? + do? = —doTdo ™, (20.10)

where the light-cone coordinates
dot =dt+do (20.11)

have been introduced. It is natural to perform a Wick rotation from the Lorentzian time ¢
to the Euclidean time
t = —ir, (20.12)

and the metric becomes
ds? = dr? 4 do?. (20.13)

It is convenient to introduce the complex coordinates
w=rT+io, w=r—1io (20.14)

for which the metric is
ds? = dwdw. (20.15)

Note that the relation to Lorentzian light-cone coordinates are
w=i(t+o)=io", w=i(t—o0)=io". (20.16)

Hence, an (anti-)holomorphic function of w (w) depends only on ot (07) before the Wick
rotation: this leads to the identification of the left- and right-moving sectors with the
holomorphic and anti-holomorphic sectors of the theory.

The cylinder can be mapped to the complex plane through

z =e2™/L z = e™0/L (20.17)
and the corresponding metric is
L\ dzdz
ds? = [ — : 20.18
° (27") |2:|2 ( )

A conformal transformation brings this metric to the flat metric (20.5). The conventions
for the various coordinates and maps vary in the different textbooks. We have gathered in
Table A.1 the three main conventions and which references use which.

4Consistent with the comments at the beginning of Chapter 19, the Lorentzian worldsheet time is denoted
by t instead of 7.
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Figure 20.2: Map from the cylinder to the sphere with two tubes, to the 2-punctured sphere
Y02

The map from the cylinder to the plane is found by sending the bottom end (corresponding
to the infinite past ¢ — —o0) to the origin of the plane, and the top end (infinite future
t — 00) to the infinity. Since the cylinder has two boundaries (its two ends) the map excludes
the point z = 0 and z = oo and one really obtains the space C — {0,000} = C*. This space
can, in turn, be mapped to the 2-punctured Riemann sphere ¥ 5.

The physical interpretation for the difference between 3y and 3¢ is simple: since
one considers the propagation of a string, it means that the worldsheet corresponds to
an amplitude with two external states, which are the mapped to the sphere as punctures
(Figure 20.2, Section 4.1.1). Removing the external states (yielding the tree-level vacuum
amplitude) corresponds to gluing half-sphere (caps) at each end of the cylinder (Figure 20.3).
Then, it can be mapped to the Riemann sphere without punctures. As a consequence, the
properties of tree-level string theory are found by studying the matter and ghost CFTs on
the Riemann sphere. Scattering amplitudes are computed through correlation functions
of appropriate operators on the sphere. This picture generalizes to higher-genus Riemann
surfaces. Moreover, since local properties of the CFT (e.g. the spectrum of operators) are
determined by the conformal algebra, they will be common to all surfaces.

Mathematically, a difference between ¥y and ¥y 2 had to be expected since the sphere
has a positive curvature (and x = —2) but the cylinder is flat (with x = 0). Punctures
contribute negatively to the curvature (and thus positively to the Euler characteristics).

Remark 20.1 The coordinate z is always used as a coordinate on the complex plane, but the
corresponding metric may be different — compare (20.5) and (20.18). As ezplained previously,
this does not matter since the theory is insensitive to the conformal factor.

20.2 Classical CFTs

In this section, we consider an action S[¥] which is conformally invariant. We first identify
and discuss the properties of the conformal algebra and group, before explaining how a CFT
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Figure 20.3: Map from the cylinder with two caps (half-spheres) to the Riemann sphere Xg.

is defined.

20.2.1 Witt conformal algebra

Since the Riemann sphere is identified with the complex plane, they share the same conformal
group and algebra. Consider the metric (20.5)

ds? = dzdz, (20.19)
then, any meromorphic change of coordinates
z— 2 =f(2), z—7=Ff({) (20.20)

is a conformal transformation since the metric becomes

2
ds?* =d7/d? = ‘g—ﬁ dzdz. (20.21)

However, only holomorphic functions which are globally defined on C are elements of the
group. At the algebra level, any holomorphic function f(z) regular in a domain D gives a
well-defined transformation in this domain D. Hence, the algebra is infinite-dimensional. On
the other hand, f(z) is only meromorphic on C generically: it cannot be exponentiated to a
group element. We first characterize the algebra and then obtain the conditions to promote
the local transformations to global ones.

Since the transformations are defined only locally, it is sufficient to consider an infinitesimal
transformation

0z = v(2), 0z = v(2), (20.22)

where v(z) is a meromorphic vector field on the Riemann sphere. Indeed, the conformal
Killing equation (19.6) in D = 2 is equivalent to the Cauchy-Riemann equations:

=0, dv=0. (20.23)
The vector field admits a Laurent series

v(z) = Zvnz"“, o(z) = Zﬁninﬂ, (20.24)

nezZ n€EZ

and the v, and v,, are to be interpreted as the parameters of the transformation. A basis of
vectors (generators) is:

by =—2""9,,  b,=-7""19;, neLl. (20.25)
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One can check that each set of generators satisfies the Witt algebra

[l n] = (M — n)lmin, lm, 2n] = (M — n)lmin, [lm, £n] = 0. (20.26)

Since there are two commuting copies of the Witt algebra, it is natural to extend the
ranges of the coordinates from C to C2 and to consider z and Z to be independent variables.
In particular, this gives a natural action of the product algebra over C2. This procedure
will be further motivated when studying CFTs since the holomorphic and anti-holomorphic
parts will generally split, and it makes sense to study them separately. Ultimately, physical
quantities can be extracted by imposing the condition z = z* at the end (the star is always
reserved for the complex conjugation, the bar will generically denote an independent variable).
In that case, the two algebras are also related by complex conjugation.

Note that the variation of the metric (A.42) under a meromorphic change of coordinates
(20.22) becomes ~

5gz2 = 0v + 0, 5gzz = 6922 =0. (2027)

20.2.2 PSL(2,C) conformal group

The next step is to determine the globally defined vectors and to study the associated group.
First, the conditions for a vector v(z) to be well-defined at z = 0 are

lim v(z) <0 = Vn<-1: wv,=0. (20.28)
|z|]—0
The behaviour at z = 0o can be investigated thanks to the map z = 1/w
dz —n—1
v(l/w) = Tw Xn:vnw , (20.29)

where the additional derivative arises because v is a vector. Then, the regularity conditions
at z = oo are

X . dz . v(l/w)
1 =1 — (1 =—1 = Vv l: =0. (20.
|Z|1m ’U(Z) |w1|m0 ] 'U( /’w) | llm 2 < o0 n > Un 0 ( 030)

As a result, the globally defined generators are
{€_1,20,60} U{l_1,00,01} (20.31)

where
AR by = —20,, b = —2%0,. (20.32)

It is straightforward to check that they form two copies of the sl(2,C) algebra

[%0,0+1] = Fhi1, [01,0-1] = 24p. (20.33)
The global conformal group is sometimes called Mo6bius group:

PSL(2,C) :=SL(2,C)/Zs ~ SO(3,1), (20.34)

where the additional division by Z, is clearer when studying an explicit representation. It
corresponds with ker P; defined in (3.91):

Ko = PSL(2,C). (20.35)
A matrix representation of SL(2,C) is
a b
g= (c d) , a,b,c,d € C, detg=ad—bc=1, (20.36)
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which shows that this group has six real parameters
Ko := dim SL(2, C) = 6. (20.37)
The associated transformation on the complex plane reads

az+b
cz+d’

fo(2) = (20.38)

The quotient by Zs is required since changing the sign of all parameters does not change the
transformation. These transformations have received different names: Mobius, projective,
homographic, linear fractional transformations. . .

Holomorphic vector fields are then of the form

v(z) = B+2az+72%, () = B+2az+7%, (20.39)

where
a=1+aq, b=4, c=—, d=1-a. (20.40)

The finite transformations associated to (19.14) are:

translation: fe(2) =z +a, acC, (20.41a)

rotation: fo(z) = I<] =1, (20.41b)

dilatation: fo(z) = )\z, AER, (20.41c¢)
z

SCT: folz) = — oy ceC. (20.41d)

Investigation leads to the following association between the generators and transformations:
e translation: £_; and Z_l;
« dilatation (or radial translation): (£ + £o);
« rotation (or angular translation): i(£y — £o);
o special conformal transformation: ¢; and 4.

The inversion defined by
inversion: It(2):=1I(2) := % (20.42a)
is not an element of SL(2, C). However, the inversion with a minus sign
I(2) = —I(2) = I(—2) = —% (20.42b)
is a SL(2,C) transformation. The two inversions are respectively used for the closed and

open strings (see Section 6.2).
A useful transformation is the circular permutation of (0,1, 00):

1
1—2

9o0,0,1(2) = (20.43)
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20.2.3 Definition of a CFT

A CFT is characterized by its set of (composite) fields (also called operators) O(z,z) which
correspond to any local expression constructed from the fields ¥ appearing in the Lagrangian
and of their derivatives.® For example, in a scalar field theory, the simplest operators are of
the form 0™ ¢".

The Grassmann parity of an operator is denoted by |O|:

0| = boooven (20.44)
—1 odd

The graded-commutator of two operators A and B satisfies:
[A, B] = (—1)14I1BI[B, A]. (20.45)

Hence, it corresponds to the usual anti-commutator when A and B are both Grassmann-odd.
Among the operators, two particular categories are distinguished according to their
transformation laws:

e primary operator:

h =\ h
Vf meromorphic : 0(z,2) = <g) (3—;) O'(f(2), f(2)), (20.46)
e quasi-primary (or SL(2,C) primary) operator:
h - h
Vf € PSL(2,C) : O(z,2) = (g) (j—é) O'(f(2), f(2)). (20.47)

The parameters (h, i_z) are the conformal weights of the operator O (both are independent
from each other), and combinations of them give the conformal dimension A and spin s:

A:=h+h, s:=h—h. (20.48)

The conformal weights correspond to the charges of the operator under £y and £,. We will

use “(h, h) (quasi-)primary” as a synonym of “(quasi-)primary field with conformal weight
(h, h)".

Remark 20.2 (Complex conformal weights) While we consider h,h € R, and more
specifically h,h > 0 for a unitary theory (which is the case of string theory except for the
reparametrization ghosts), theories with h, h € C make perfectly sense. One example is the
Liouwville theory with complex central charge ¢ € C [245, 2/6] (central charges are defined
below, see (20.60)).

Primaries and quasi-primaries are operators which have nice transformations respectively
under the algebra and group. Obviously, a primary is also a quasi-primary. These transfor-
mations are similar to those of a tensor with A holomorphic and A anti-holomorphic indices
(Section 5.1). Another point of view is that the object

O(z, %) dz"dz" (20.49)

5Not all CFTs admit a Lagrangian description. But, since we are mostly interested in string theories
defined from Polyakov’s path integral, it is sufficient to study CFTs with a Lagrangian.
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is invariant under local / global conformal transformations.

The notation f o O indicates the complete change of coordinates, including the tensor
transformation law and the possible corrections if the operator is not primary.® For a primary
field, we have:

fo0(z,2) = /()" F(2) O (£(2), F(). (20.50)
We stress that it does not correspond to function composition.
Under an infinitesimal transformations

0z = v(z), 0z =0(2), (20.51)

a primary operator changes as
60(2,2) = (hOv +v3)O(2,2) + (h0v + ©0)O(2, 2). (20.52)
The transformation of a non-primary field contains additional terms, see for example (21.23).

Remark 20.3 (Group versus algebra) The question is whether one requires the theory to
be invariant under the global transformations or rather under local transformations. Theories
arising from gauge fizing a local Weyl invariance (which is the case for string theory) leads
naturally to a local invariance. More generally, one expects that a local field theory is
sensitive only to local properties. On the other hand, this assumption may be too strong
(e.g. in statistical physics or in systems without a Lagrangian formulation). But, making the
assumption that only the local properties matter can be useful for a preliminary study. This
is really because the two-dimensional algebra is infinite-dimensional that so many models can
be solved exactly in two dimensions. Useful discussions can be found in [211, 245, sec. 1.3,
251].

Remark 20.4 (Higher-genus Riemann surfaces) According to Remark 19.1, all Rie-
mann surfaces ¥, share the same conformal algebra since locally they are all subsets of R?.
On the other hand, one finds that no global transformations are defined for g > 1, and only
the subgroup U(1) x U(1) survives for the torus.

The most important operator in a CFT is the energy—momentum tensor T},,, if it exists
as a local operator. According to Section 3.1, this tensor is conserved and traceless

VT, =0, 9" T, = 0. (20.53)
The traceless equation in components reads
9" Ty =4T, =Tpe +Tyy =0 (20.54)
which implies that the off-diagonal component vanishes in complex coordinates
T, =0. (20.55)
Then, the conservation equation yields
0.Tzz =0, 0:T,, =0, (20.56)

such that the non-vanishing components T,, and T3z are respectively holomorphic and
anti-holomorphic. This motivates the introduction of the notations:

T(2) := T, (2), T(2) := T:z(%2). (20.57)

This is an example of the factorization between the holomorphic and anti-holomorphic sectors.
Currents are local objects and thus one expects to be able to write an infinite number of
such currents associated to the Witt algebra. Applying the Noether procedure gives
Jy(2) := JZ(2) = =T (2)v(2), Jo(2) := J?(2) = =T(2)9(Z). (20.58)
61In fact, one has f o © := f*O in the notations of Chapter 3.
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20.3 Quantum CFTs

The previous section was purely classical. The quantum theory is first defined through the
path integral

Z = / dw e S, (20.59)

but we will mostly use the operator formalism. The latter is more general than the path
integral and allows to work without reference to path integrals and Lagrangians. This is
particularly fruitful as it extends the class of theories and parameter ranges (e.g. Remark 20.2)
which can be studied.

20.3.1 Virasoro algebra

As discussed in Section 3.3.3, field measures in path integrals display a conformal anomaly,
meaning that they cannot be defined without introducing a scale. This anomaly can be
traded for a gravitational anomaly by introducing counter-terms in the action [108, 119,
sec. 3.2, 121, 126, 149, 160]. As a consequence, the Witt algebra (20.26) is modified to its
central extension, the Virasoro algebra.” The generators in both sectors are denoted by {L,}
and {L,} and are called Virasoro operators (or modes). The algebra is given by:

(L, Ln] = (M — 1) Lynn + % m(m — 1)(m + 1), (20.60a)
(Lo, Ln] = (m — 1) Lynn + % m(m —1)(m + 1)8msn, (20.60b)
[Lm,Ln] =0,  [¢,Lm] =0, [¢Ly]=0, (20.60c)

where ¢, c € C are the holomorphic and anti-holomorphic central charges. Consistency of the
theory on a curved space implies ¢ = ¢, but there is otherwise no constraint on the plane [119,
301].

The s((2, C) subalgebra is not modified by the central extension. This means that states
are still classified by eigenvalues of (h, h) of (Lg, Lg).

Remark 20.5 In most models relevant for string theory, one finds that the central charges
are real, c,c € R. Moreover, unitarity requires them to be positive c,c > 0, and only
reparametrization ghosts do not satisfy this condition. On the other hand, it makes perfect
sense to discuss general CFTs for c,¢c € C (the Liouwville theory is such an example [245,

2/6]).

20.4 References

o The most complete reference on CFTs is [69] but it lacks some recent developments.
Two excellent complementary books are [35, 251].

String theory books generally dedicate a fair amount of pages to CFTs: particularly
good summaries can be found in [34, 158, 237, 238].

Finally, a modern and fully algebraic approach can be found in [244, 245]. Other good
reviews are [240, 257].

o There are various other books [129, 147, 155, 209] and reviews [45, 110, 114, 249, 297].

e The maps from the sphere and the cylinder to the complex plane are discussed in [237,
sec. 2.6, 6.1]. General maps are discussed in [98, sec. 2.2.3, 251, chap. 1].

"That the central charge in the Virasoro algebra indicates a diffeomorphism anomaly can be understood
from the fact that
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Chapter 21

Operator formalism

In this chapter, we introduce the radial quantization and operator formalism for 2d CFTs.
We first start by considering general operators and introduce operator product expansions
(OPE) which characterize what happens when to operators get close to each other. Then, we
describe how the different types of conjugations (BPZ, Hermitian, star) arise from discrete
symmetries (parity, time-reversal, charge conjugation) and combinations thereof. We then
introduce the mode expansions of operators and use it to construct the Hilbert space. This
chapter on CFTs is the most important for this review as it includes information on the tools
needed to compute in the worldsheet formalism.

21.1 Radial quantization

Radial quantization is a convenient description of a CFT on the plane in terms of operators.
It relies on the maps given in Section 20.1.2:

T+io

z=¢e =z +iy. (21.1)

Taking the physical spacetime to be the cylinder, every question is rephrased on the complex
plane in order to exploit the powerful tools from complex analysis. The term “radial
quantization” comes from the fact that time translation of the cylinder

T—74+T (21.2)
corresponds to dilatation on the plane
z—elz. (21.3)

Thus, time evolution on the cylinder and radial evolution (from the origin to the complex
infinity) are identified. In particular, the Hamiltonian of the system of the plane is

H= %(Lo + L), (21.4)

since the RHS is the dilatation operator. The cylinder length L was defined in (20.9). The
theory is quantized according to this Hamiltonian. In the string theory language, a state
with H = 0 is said to be on-shell:

on-shell state: h+h=0. (21.5)
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21.2 Radial ordering and commutators
Time-ordering in 7 becomes radial ordering in the plane:

A(2)B(w) |z| > |w],
R(A(2)B(w)) = {(_1)|A||BI B(w)A(z) |w| > |2,

where the sign depends on the Grassmann parity of the operators.. Radial ordering will often
be kept implicit.

The equal-time (anti-)commutator becomes an equal radius commutator defined by
point-splitting:

[A(2), B(w)],jz1=|w| = lim (A(2) B(w)]}2)=jw|+s £ B(w)A(2)]|2)=jw|—s)- (21.7)

(21.6)

If A and B are two operators which can be written as the contour integrals of a(z) and b(z)
(corresponding to integral over closed curves on the cylinder)

dz dz
A= . 2 — a(z), B = . o — b(2), (21.8)

then one finds the following commutators:

(4, B]s = }{ o ]{ 2 a(2)b(u), (21.9a)
A bl = § 5% (). (21.9)

The contours Cy and C,, are respectively centered around the points 0 and w. For a proof,
see Figure 21.1. Since these are contour integrals in the complex plane, the Cauchy-Riemann
formula (B.1) can be used to write the result as soon as one knows the poles of the above
expression (ultimately, this amounts to pick the sum of residues). In CFTs, the poles of such
expressions are given by operator product expansions (OPE), defined below (Section 21.3).

z z 2

Figure 21.1: Graphical proof of (21.9).

Given a conserved current j#
d.j* = 95% + 9j* = 2(845 + d3.) = 0, (21.10)

the associated conserved charge is defined by

2mi

Q=L ?i Gz — jud), (21.11)

where Cj denotes the anti-clockwise contour around z = 0 (equivalently the interior of the
contour is located to the left). The difference of sign in the second term follows directly
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from Stokes’ theorem (B.5g) (and can be understood as a conjugation of the contour). The
additional factor of 1/27 is consistent with the normalization of spatial integrals in two
dimensions. The current components are not necessarily holomorphic and anti-holomorphic
at this level, but in practice this will often be the case (and each component is independently
conserved), and one writes

§(2) == 7.(2),  3Z):=j:(3). (21.12)

In this case, the charge also splits into a holomorphic and an anti-holomorphic (left- and
right-moving') contributions

. 1 g
= 5= A j(2)dz, Qr = ~5n . 7(z)dz. (21.13)

Q=Qr+Qr, Qr:

The infinitesimal variation of a field under the symmetry generated by @ reads

5.0(2,2) = —[eQ, O(2,2)] = —e f W )02, 2) + € f 40 )00, 7).  (21.14)

c, 2mi ¢, 2mi

The contour integrals are easily evaluated once the OPE between the current and the operator
is known. This formula gives the infinitesimal variation under the transformation for any
field, not only for primaries.

Computation — Equation (21.11)
In real coordinates, the charge is defined by integrating the time component of the
current j* over space for fixed time (A.32):

_ 1 0
Q_zﬂ/dU]'

The first step is to rewrite this formula covariantly. Since the time is fixed on the slice,
d7 = 0 and one can write

1 , : 1 o
Q= g/(dajo—dml):—%/ew”dx .

The last formula is valid for any contour. Moreover, it can be evaluated for complex
coordinates:

1 e .z _ i 2 s .z _ 1 o
Q:_%fsz(J dz - j*dz) = 47rf(3 dz - j7dz) = %(szz Jzdz).

2mi

One finds a contour integral because 7 = cst circles of the cylinder are mapped to
|2| = cst contours.

21.3 Operator product expansions

The operator product expansion (OPE) is a tool used frequently in CFT: it means that when
two local operators come close to each other, it is possible to replace their product by a sum

LFor charges, we use subscript L and R to distinguish both sectors to avoid introducing a new symbol for
the total charge. However, since Q = Q, in the holomorphic sector, it is often not necessary to distinguish
between the two symbols when acting on an operator or a state (however, this is useful for writing mode
expansions). We do not write a bar on Qg because the charges don’t depend on the position.
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of local operators

k
Cij _
Oi (zlazl) (Z]’ZJ) E : hith; —hi —hith;—hg Ok(zjazj)’ (2115)
ko % Zij

where the OPE coefficients cfj are some constants and the sum runs over all operators. When
Oy, is primary, the coefficients cfj are related to the structure constants and the field metric
by

Cijk = greCsj- (21.16)
The radius of convergence for the OPE is given by the distance to the nearest operators in

the correlation function. The OPE defines an associative algebra (commutative for bosonic
operators), and the holomorphic sector forms a subalgebra (called the chiral algebra).

Example 21.1 — OPE with the identity
The OPE of a field ¢(z) with the identity 1 is found by a direct series expansion

$()1=3" (Z_n—f”)" " (w). (21.17)

neN

Obviously there are no singular terms.

Starting from this point we consider only the holomorphic sector except when stated
otherwise. The formula for the OPE (21.15) can be rewritten as

{AB}n(z)
= 21.18
A2)B(w) = Z o (21.18)
n=—oo

to simplify the manipulations. N is an integer and there are singular terms if N > 0.
Generally, only the terms singular as w — z are necessary in the computations (for example,
to use the Cauchy—Riemann formula (B.1)): equality up to non-singular terms is denoted by
a tilde

Z {AB}” z) —: A(2)B(w). (21.19)

The RHS of this expression defines the contraction of the operators A and B.
While, most of the time, only singular terms are kept

k

()ch—th i (w) (21.20)

(with (x) the Heaviside step function), it can happen that one keeps also non-singular terms
(the product of two OPE have singular terms coming from non-singular terms multiplying
singular terms). Explicit contractions of operators through the OPE is also denoted by a
bracket when there are other operators.

For a primary field ¢(z), one finds the OPE with the energy—momentum tensor to be

T(p(w) ~ 2k + 21,

bi(2i);(25) Ze(h + hj — hg)

(21.21)

where h is the conformal weight of the field. This OPE together with (21.14) for j(z) =
—v(2)T(2) correctly reproduces (20.52).
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Computation — Equation (20.52)

5= f ST ~ § 2 o (L2 4 24

c. 2mi ¢, 2mi w—2)2 w-—z

= hv(z) 4(2) + v(2)0¢(2).

For a non-primary operator, the OPE becomes more complicated (as it is reflected by
the transformation property), but the conformal weight can still be identified at the term in
272. The most important example is the energy—momentum tensor: the central charge is
found as the coefficient of the z~* term its OPE with itself:

c/2 2T(w) = 0T (w)
z—w)? (z—w)? z—w’

T(2)T(w) ~ (21.22)

The OPE indicates that the conformal weight of T' is h = 2. Using (21.14) for j(z) =
—v(2)T'(2), one finds the infinitesimal variation

ST =20vT +vOT + % 8%v, (21.23)

The last term vanishes for global transformations: this translates the fact that T is only a
quasi-primary. The finite form of this transformation is

o\ dz -2 o _(dz -2 c
T'(w) = (@ (T(z) ES(w’z)) =(g) T@+ 55w (21.24)
where S(w, z) is the Schwarzian derivative
w® 3 [(w"\?

where the derivatives of w are with respect to z. This vanishes if the transformation is in
SL(2,C), and it transforms as

S(u,z) = S(w,z) + (i—f) S(u, w) (21.26)

under successive changes of coordinates.

Computation — Equation (21.23)

LORE S z S T ~ §

C, 2mi

d—wv(w)(( c/2 + 2T (w) +(9T(w))

z—w)?t  (z—w)?  z—w

= 5%3 33v(z) + 20v(2) T(2) + v(2)0T(2).

21.4 Discrete symmetries and conjugations
The objective of this section is to understand how discrete spacetime symmetries act on the

worldsheet after continuation from Lorentzian to Euclidean signatures. These symmetries
are used to introduce different notions of conjugations. Hermitian conjugation is adapted for
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amplitudes amplitudes because it defines a unitary time evolution. However, CFT naturally
comes with an inner-product, which can be constructed from the BPZ conjugation. These
different conjugations provide maps from in-states to out-states on the cylinder, and they
can be related by imposing a reality condition, provided by the star conjugation (itself a
map from in-states to in-states).

In each case, our strategy is as follows: 1) write the transformation for the Lorentzian
coordinates and operators, 2) perform the Wick rotation (20.12) to obtain the action on the
Euclidean coordinates and fields on the cylinder, 3) perform a change of variables to translate
them to the complex plane. We stress that we are studying only the transformations of the
fields: they may or may not be realized as symmetries of the theory.

For convenience, we recall the relations between the coordinates on the cylinder w = 7+io
and w = w*, and on the complex plane z = ¥ = z + iy and zZ = 2*, where (7, 0) are the
Cartesian coordinates in Euclidean signature (Section 20.1.2). The Euclidean time 7 is related
to the Lorentzian time t as t = ir. We consider a generic operator O(¢,0) in Lorentzian
signature, and define its Euclidean version O(r, o) by Wick rotation.

We will find that several operations (parity, time-reversal, Hermitian and star conjugations)
contain a complex conjugation of the coordinates. They are associated with anti-holomorphic
conformal maps and reverse the orientation of the surface.

21.4.1 Parity

Worlsheet parity Q (also called twist, and usually denoted as P) is obtained by reflecting the
spatial coordinate o:

Q:(t,0) — (t,2m —0) (Lorentzian). (21.27)

However, it is useful to consider a more general transformation [1, p. 7], which allows
discussing both the open and closed string at the same time. The fixed points of the
transformation (21.27) are ¢ = 0,m: they can be changed by translating ¢ — o + «,
with a € [0,27). On the complex plane (see below), this corresponds to z — €'®/2z and
Z — e71%/23 which is a global phase redefinition: in closed string theory, such a change of
coordinates do not change the physics because of the level-matching condition (??). Hence,
the phase in € can be chosen arbitrarily. While most references use a = 0 for the closed
string, the choice a = 7 allows using the same transformation for both open and closed
strings. Indeed, the transformation for the open string reads ¢ — 7 — ¢ and is uniquely
defined from the boundaries at o = 0,7 (Section 6.2.2).

Hence, we consider the more general parity transformation

Q:(t,o) — (t,2r —a—o0) (Lorentzian). (21.28)
which immediately leads to
Q:(r,0) — (,2r —a—o0) (Euclidean). (21.29)

In terms of complex coordinates, €2 acts as complex conjugation, which exchanges the
holomorphic and anti-holomorphic coordinates, together with a translation:

Q: (0, @) — <u7+ @21 — Q)i,w — (27 — a)i),
. , (21.30)
Q:(z,2) — (e‘(27r —a)z,e7i@m—a) z)

Note that Q=1 = Q. For a = 0 and o = 7, the effect of parity is to exchange z and Zz, with
an overall sign in the second case. We need to keep the factor 2™ explicit: when performing
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a conformal transformation, this factor is raised to a power of the weight, which can be
half-integer.
The coordinate z transforms such that:

2l <1 = |Qz| <1, Imz>0 = +ImQz<0, (21.31)

where the plus and minus signs correspond respectively to a = 0, .
Given an operator O, parity acts in both signatures as

QO(t,0)Q2 =10 O(t, 21 — a — o), QO(1,0)2 =nq O(T, 2 — o — 0), (21.32)

where 7q = %1 is the intrinsic parity of the operator. In terms of complex coordinates on
the cylinder, this gives:

QO(w, ®)Q = 10 o(w + (27 — a)i,w — (27 — a)i), (21.33)
from which we deduce the transformation on the plane (for O quasi-primary):
QO(2,2)Q = nq @D "=h) o) (ei@’f—a) 7, e"i2r—0) z). (21.34)

Given two operators A and B, and a number A € C, parity ignores c-number and acts on
each operator without changing the order:

QAN =4,  QOA)Q = AQAQ,

21.35
Q(A+ B)Q = QAQ + QBQ, Q(AB)Q = (2BQ) (RAQ). ( )
Computation — Equation (21.34)
We first transform z — ez and then complex conjugate:
—i(27r—a R1*
d(e @ )Z) — ei(27r—a)h
dz ’
and similarly for the anti-holomorphic sector.
21.4.2 Time-reversal
Worlsheet time-reversal T is obtained by reflecting time ¢:
T:(t,o0) — (-t o) (Lorentzian). (21.36)
This immediately leads to
T:(r,0) — (—T1,0) (Euclidean). (21.37)

When acting on complex coordinates, time-reversal corresponds to complex conjugation and
reflection around the origin:

T: (w,w) — (—w, —w) (21.38)
since
w=7+ic =5 —7 +i0 = —w. (21.39)
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On the complex plane, it now amounts to inversion and complex conjugation:

T:(2%) — (%%) (21.40)
since
z=e¥ TN eV = % (21.41)
Note that 7-1 =T.
The coordinate z transforms such that:
2] <1 = |Tz|>1, Imz>0 = ImT7z>0. (21.42)
Given an operator O, time-reversal acts in both signatures as
TO(t,0)T = O(—t,0), TO(r,0)T = O(—T,0). (21.43)
In terms of complex coordinates on the cylinder, this gives:?
TO(w,w)T = O(—w, —w), (21.44)
from which we deduce the transformation on the plane (for O quasi-primary):
TO(z 2T = % 0 (% %) : (21.45)

Note that (—1)" and (—1)" are ambiguous for half-integer weights (h, h): we fix it by writing
(=1)" = ei™ and (—1)" = e~i"* [268, sec. 4]. This can also be motivated by analytic
continuation from Lorentzian signature, by tracking the signs from each Lorentz and spinor
indices [224, sec. 2].

In Lorentzian signature, time-reversal needs to be anti-linear (i.e., it conjugates complex
numbers).® In Euclidean signature, we instead consider 7 to be linear for the following
reasons.® First, Euclidean time and space behaves in the same way and can be mixed with
SO(2) transformations: hence, it seems natural to define 7 like 2. Second, we will introduce
the total reflection transformation as a combination of parity and time-reversal, see (21.36),
and use it to define the BPZ conjugation: conventionnaly, the latter does not complex
conjugate c-number. Third, the motivation for the original argument cannot be reproduced
for Euclidean signature since the time evolution operator does not contain an i factor. We
also want to avoif any ambiguity for its action on z and Zz. Nonetheless, we introduce an
anti-linear operator 7 for the need of the CPT operator (Section 21.4.5):°

TAAT = \* TAT. (21.46)

Given two operators A and B, and a number A € C, time-reversal ignores c-number and
acts on each operator without changing the order:

T(TAT)T =4,  TO\A)T = ATAT,

T(A+B)T =TAT +TBT,  T(AB)T = (TBT)(TAT). (21.47)

2In QFT, time-reversal comes with a phase 7. In 2d CFT, we can consistently set it to one.

3The usual argument is as follows: one finds that 7(iH)7 = —iH, which means that an eigenstate of
energy F is mapped to an eigenstate with energy —F if T is unitary and H invariant under time-reversal.

4In fact, there is some ambiguity in defining time-reversal in Euclidean signature. For example, both 7~
and 7C (C being the charge conjugation operator, see (21.48)) can be used [113]. A similar example is [289]
which takes the CPT operator to be linear instead of anti-linear.

5The bar, inspired from [20], reminds us that 7 is anti-linear. The book [252, sec. 11.6] also introduces
two notations.
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Computation — Equation (21.45)
We first transform z — 1/z and then complex conjugate:

()] - () -
()] - () -

+im

In both expressions, we have written (—1) = e™'", and we need to pick a phase: as
explained below (21.45), we choose €™ for the holomorphic sector and e™'™ for the
anti-holomorphic.

21.4.3 Charge conjugation and Hermitian adjoint

Charge conjugation C acts by exchanging particles and anti-particles and has no effect on the
worldsheet coordinates. In a 2d CFT, we define its action by associating a charge-conjugate
operator O to each operator O:

CO(t,0)C := O"(t,0). (21.48)

Given that it does not act on coordinates, we immediately find its action in Euclidean
signature on the cylinder and complex plane:

CO(r,0)C = Ot (r,0), CO(z,2)C = 0" (z,%). (21.49)

We do not introduce a phase nc because it can be included in the definition of O*. Note
that O and O have the same conformal dimension.

Given two operators A and B, and a number A € C, charge conjugation ignores c-number
and acts on each operator without changing the order:

C(CAC)C = A, C(AA)C = ACAC, (21.50)

C(A+ B)C =CAC+CBC, C(AB)C = (CBC) (CAC). ’

Given a certain set of operators {O;}, how do we find the {O;'} in terms of the original

operators? We need to get some constraints whose solutions will give us the desired relations.

This includes asking for the energy-momentum tensor to be Hermitian, imposing some

inner-product to be real, and preserving the operator algebra under conjugation. Examples
of these different types will be found in Chapters 13 and 22.

Hermitian adjoint In Lorentzian signature, the Hermitian adjoint is defined by 1) reversing
the order of all operators, 2) replacing them by their charge-conjugates, 3) conjugating any
complex number. Hence, the adjoint O(t, o) of an operator O(t, o) is:

O(t,0)' :=CO(t,0)C = OF (¢, 0). (21.51)

An operator is said to be Hermitian (resp. anti-Hermitian) if O equals O (resp. —O) under
conjugation:

Hermitian: Ot = O, anti-Hermitian: O = —-0. (21.52)

Remark 21.1 (Fields with components and Hermitian adjoint) Here, we consider

fields with a single component, which simplifies the notations. This is appropriate in two
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dimensions since usual fields (scalars, fermions, ghosts) do not have spacetime indices. In
higher dimensions, by convention, Hermitian conjugation of a spinor field ¢ also takes the
transpose of the spinor indices, such that ! is a row vector (related to the Dirac conjugate " ).
The charge-conjugate is then related (through the charge conjugation matriz) to an “adjoint
without transpose”, sometimes denoted as ¥* [300, sec. 2.3, 306, eq. (5.5.47)], which is what
appears when formulating a reality condition (see also [105, sec. 3.2.4]).

In Euclidean signature, the Hermitian adjoint O(z,2)" of an operator O(z,z) can be
defined in two different ways:

1. by acting as the usual adjoint on operators (in particular, on the modes as discussed
in Section 21.5) and by conjugating all factors of i (including the ones in complex
coordinates);

2. by Wick rotating the Hermitian adjoint (21.51) in Lorentzian signature, which will
require an additional time-reversal operation on top of charge conjugation.

We require both definitions to agree, which will constrain the mode expansion of the adjoint
operators (Section 21.5).

In order to define the Wick rotation, we need to proceed carefully and start by studying
the effect of the adjoint on coordinates. First, Cartesian coordinates are real and are left
invariant under Hermitian conjugation: given the coordinates (¢,0) and (7, o) on the cylinder,
and (z,y) on the plane (Section 20.1.2), we have:

th =1, =r ol =0, zf =z, yt=y. (21.53)

Given a combination of coordinates, the adjoint conjugates all factors of i, such that it acts
onw=7+io and z =e¥ =z + iy as:

wh =, ol =w, 2 =2z, =2 (21.54)

While we treat z and Zz as independent quantities in general, physical quantities are defined
on the surface Z = z*, which motivates the equations above (see also the discussion at the
end of Section 20.2.1).

We can know go on with the Wick rotation, starting with the cylinder. While Hermitian
conjugation does not affect the Cartesian coordinates since they are real, taking it before or
after the Wick rotation gives a different result since we have t = —ir. Hence, compatibility
between the two signatures requires an additional time-reversal in Euclidean signature:

tr=ir = 17— -T. (21.55)

Hence, a possible definition of the Hermitian adjoint is to take the conjugate operator in
Lorentzian signature, then do a Wick rotation followed by a time-reversal.

To make this statement more precise, consider the operator O(t, o) in Lorentzian signature.
Time evolution is generated by the operator U(t) = et such that

O(t,0) = U(t)~10(0,0)U(t). (21.56)
When the Hamiltonian is Hermitian, H = HT, U(t) is unitary: U(¢)T = U(t)~! = U(-t).
Then, if the Hermitian adjoint of the operator at ¢ = 0 is its charge-conjugate operator,

0(0,0)f = O*(0,0) as in (21.51), then the adjoint operator at all times equals the time
evolution of the operator O7:

O(t,0)t = (U®)710(0,0)U 1) = U®) 0% (0,0)U(t) = O*(t,0), (21.57)
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in agreement with (21.51). In particular, if the operator is Hermitian at t = 0, O7(0,0) =
0(0,0), it is Hermitian at all times: O (t,0) = O(t, o).

Let us follow the same steps in Euclidean signature. Operators are obtained by Wick
rotation: the time evolution operator is U(7) = e~"# and we have:

O(t,0) =U(1)"*0(0,0)U(7). (21.58)
Applying the adjoint on this expression, we find
O(r,0) = (U)o O')U(T))T =U(1)0*(0,0)U(7)" L. (21.59)

Since U (7) is not unitary, we have U (1) = U(7), whereas U(7)~! = U(—7), As a consequence,
we see that the Hermitian adjoint O in Euclidean signature corresponds to the time evolution
of the charge-conjugate operator O+ followed by a time-reversal:

O(1,0)" := CO(-1,0)C. := OF (~1,0), (21.60)
which can also be written as:
O(r,0)" = CTO(r,0)CT. (21.61)

We stress that this definition in terms of C and 7 applies only to a single operator: Hermitian
conjugation will also conjugate complex numbers, and exchange operator orders. Hence, it
cannot be represented as an operator (nor a conformal transformation), which explains why
we write = instead of :=.

Changing to complex coordinates, time-reversal corresponds to complex conjugation and
reflection around the origin:

T—>—T —

w=7+ic — -7 +i0 = —w" = —w. (21.62)
This implies that the adjoint on the cylinder in complex coordinates reads:
O(w, )" := TOT (w, )T = OF (—w, —w). (21.63)

Since the adjoint cannot be implemented as a conformal transformation, we need a
different approach to derive its expression in the z-plane. To find the transformation of the
operator on the complex plane, the idea is to perform the change of coordinates w — 2z
before and after applying the adjoint, which allows isolating the definition of the adjoint on
the plane [144, sec. 4]. This gives:

O(z,2)" := = Lo+ <i1) (21.64a)
Z2h 52k zZ' z
which can also be written as
0(z,2)t = (-1 CTO(2,2)CT. (21.64b)

Note that Hermitian conjugation exchanges the holomorphic and anti-holomorphic sectors.

Computation — Equation (21.64)
As explained in the text, we need to transform z = e“ before and after applying the
adjoint. In the first case, we find:

O(w, @) = (zhzﬁ O(z, z))T =72 Oz, 7)1 (21.65)
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In the second case, we get:

00w, =0 () = (£)" (&) 0,

= 1 _ 0ot (1, 1)
z=1/z Ehzh Z z

(21.66)
by evaluating the transformation w = Inz at z = 1/z. Equating both expressions
and moving Oz, Z)! to one side yields the desired result. Notice that there is no sign
(—1)"*" contraty to the expression (21.45) for time reversal.

Writing 2’ = 1/Z, the coordinate z transforms in the same way as for time-reversal:
2] <1 = |]|>1, Imz>0 = Imz >0. (21.67)

This means that a point inside the unit disk is mapped to a point outside, but staying in the
same half-plane. We will interpret this as a map from in-states to out-states in Section 21.6.
As a consequence, we cannot use Hermitian conjugation to impose a reality condition on
operators: for this reason, we will define the star conjugation below ((21.86)).

The identity operator is invariant:

1t =1. (21.68)

Given two operators A and B, and a number A € C, the Hermitian adjoint acts by complex
conjugation of any c-number and reverses the order of the operators without any sign:

MANT =4,  AAt=X"A",  (A+B)'=A"+B', (4B)'=BTA". (21.69)
For a string of operators, we have:
A4 - At =4l .. Al dec. (21.70)
Operators in the RHS are correctly radially ordered.

Remark 21.2 (Hermitian adjoint: notations and definitions) While the Hermitian
adjoint is denoted as O almost everywhere, the conjugate operator O7 is denoted as O,
in [317], as he(O) in [112], as O* in [89], as OF in [35], as O in [22/].

Some other references [35, eq. (2.29), 69, eq. (6.9), 147, eq. (75), 159, eq. (4.6.5)] omit
to distinguish OF from O: such a definition is problematic because it cannot work for both O
and iO at the same time.

21.4.4 Reflection and BPZ conjugation

Full reflection is obtained by combining parity and time-reversal:

QT : (t,0) — (—t,2r —a —0) (Lorentzian), (21.71a)
QT : (1,0) — (-1, 2r —a—o0) (Euclidean). (21.71Db)

This leads to the following action on the complex coordinates on the cylinder:
QT : (w,w) — (—w+ (27 — @)i,—0 — (27 — @)i). (21.72)

In terms of the z-coordinate on the plane, we find an inversion with a global phase rotation:

(21.73)

i2r—a) _ . i(27r—a)
Q’T:(Z,Z)—)(e , © )

z z
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Note that we could choose different phases o for parity and reflection if needed. For a = 0, 7,
we recover the inversions defined in (20.42):

1
I*(2) = -, a=0m (21.74)
The coordinate z transforms such that:

2| <1 = |QTz|>1, Imz>0 = =£ImQT7z2<0, (21.75)

where the plus and minus signs correspond respectively to a = 0, 7.

Reflection is implemented by applying first 7, then Q (or conversely) using (21.34) and
(21.45). To avoid repetitions, we just give the transformation of an operator on the complex
plane (setting 7o = 1 from now on):

_ (_1\h—h i2r—a) L—i27r—a)
= i(2m—a)(h—h) (-1 € €
OTO(2,2)QT =e g © ( —, I — . (21.76)

Next, we introduce BPZ conjugation as the special cases a = 0, .

Remark 21.3 (Strong reflection) Strong reflection is the combination of parity, time-
reversal and exchange of operators (but it does not complex conjugate numbers) [187, 22/].
Because it reverses the operator order, it can be implemented only on the operator algebra but
not on states. To transform the latter, we need to define a formal mapping rule on correlation
functions induced by the action on the operators.

In Euclidean signature, operators (anti-)commute and thus we can restore the operator
order if necessary. However, as discussed below, operators are not radially ordered after a
reflection.

BPZ conjugation BPZ conjugation is defined as:®
O(z,2)t =TI 0 O(z,2), (21.77a)

where I*(z) = £1/z is the inversion (20.42). By convention, when anywhere where the
BPZ conjugation is involved, the upper-sign refers to I™ (or @ = 0) and the lower sign to
I~ (a = m). The minus (resp. plus) sign is more convenient when working with the open
(resp. closed) string (see Section 6.2). For a quasi-primary field, we get:

h—h
0zt = T " o (j:l, ii) . (21.77b)
22h z2h z z

There is one caveat to this form of the BPZ conjugation: if h and h are half-integers, we
need to write (—1) = e'™ and (+1) = e?™! to obtain the correct phases:

. _ e21ri e—2ﬂ'i
eim(h—h) - ) for I (a =0),
O(z,2)" = o (21.77¢)
i (heT e e
Airh=h o [ for I (a=m).
2z’ Z

An operator is BPZ-even (resp. BPZ-odd) if it equals itself (minus itself) under BPZ
conjugation:
BPZ-even: O'= 0, BPZ-odd: O = -0. (21.78)

6The index ¢ should not be confused with the matrix transpose: it is used in opposition with t to indicate
that no complex conjugation is involved. However, it differs from the usual transpose since it does not change
the order of operators.
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Note that this makes sense only for z-independent operator (for example, by averaging over
some contour or considering a single mode).
The identity operator is invariant:
1t =1. (21.79)

Given two operators A and B, and a number A € C, the BPZ conjugation does not complex
conjugate c-number nor changes the order of the operators:

(A=A, AA'=x4'", (A+B)!=A4"+B', (AB)'=A'B". (21.80)

The fields become anti-radially ordered after a BPZ conjugation since it sends z to 1/z.
The radial ordering can be restored by (anti-)commuting the fields, which can introduce
additional signs [268]:

(AB)t = (—1)1AlIBI gt At (21.81)
This problem does not arise when working in terms of the modes. For a string of operators,
we have:

AO1---0,) = X0%-.. 0L, XeC. (21.82)
It can also be used to define what we mean by an operator evaluated at z = z = oo:
O(00,00) := lim_ M2 0(2,2) = (F1)" " 0(0,0)". (21.83)
2,2

Remark 21.4 (BPZ conjugation: notations) It is denoted as O* in [89], as OT in [317],
as bpz(O) n [112].

21.4.5 CPT symmetry and star conjugation

CPT symmetry is defined by the combination of parity (21.28), time-reversal (21.36), and
charge conjugation (21.48): ~
0 :=COT, (21.84)

where 7T is the anti-linear time-reversal operator. It acts on the coordinates in the same way
as the reflection discussed in Section 21.4.4.

We define its action by applying successively each transformation, starting with 7 to
avoid ambiguities with complex factors, such that the transformation of an operator on the
plane reads:

_ (_1\r—Ph i(2r—a) L—i(27r—a)
N a-1 _ ir—a)(h—h) (=1) +(€ €
00(2,7)0 1 = e i © ( —. ), (21.85)

In Lorentzian signature, an equivalent definition was proposed in [187] by combining
strong reflection (Remark 21.3) and Hermitian conjugation (21.51). Indeed, strong reflection
implements parity and time-reversal (linearly, i.e. without complex conjugation), while
Hermitian conjugation contains charge and complex conjugations; moreover, both operations
exchange the order of operators, the net effect being to keep the original operator ordering. In
Euclidean signature, these operations give a different result because the Hermitian conjugation
(21.64) contains an additional time-reversal.

Like Hermitian and BPZ conjugations, CPT maps a point inside the unit disk outside: as
such, it gives a map from in-states to out-states. We would like to introduce a conjugation
which can be used to impose a reality condition on states and operators, which means
that it should map in-states to in-states. This motivates us to introduce a new operation,
star conjugation (this is called worldsheet-CPT in [224], but we keep this name for the
transformation above). Such a map can be obtained by combining BPZ and Hermitian
conjugations, which also matches the second definition of CPT if we replace strong reflection
by normal reflection.
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Star conjugation According to the previous discussion, we define star conjugation as the
combination of Hermitian and BPZ conjugations:

O(z,2)" == (0(z,2)) = (O(z,2)")". (21.86)

For a primary field, we get:
0(z,2)* = (F1)" P OF (22, +2). (21.87)
An operator is real (resp. imaginary) if it equals itself (minus itself) under star conjugation:

real: O* =0, imaginary: O* = -0. (21.88)

Note that this makes sense only for z-independent operator (for example, by averaging over
some contour or considering a single mode).
The identity operator is invariant:

1* =1. (21.89)

Given two operators A and B, and a number A € C, star conjugation acts by complex
conjugation of any c-number and reverses the order of the operators without any sign:

(A = A, AA* = N AX, (A+ B)* = A* + B*, (AB)* = B*A*. (21.90)
For a string of operators, we have:
(MNAy - A =X A - A7, recC. (21.91)
Operators in the RHS are not radially ordered.

Remark 21.5 (Star conjugation: notations) It is denoted as O% in [89] (where it is
called “reality conjugate”), as O* in [112].

Computation — Equation (21.86)

— 1' —
vt [(FDMR 1.1 _onon, (FDMM L
(O(z,2)")' = <—z2h22’_1 o :I:z,:l:Z =z 2" x =T 07 (£z,+2).

Remark 21.6 (Euclidean conjugation) Polchinski introduces one more operation: the
Euclidean conjugation, denoted as O(z,z) [237, p. 202-203]. It is obtained by combining time-
reversal and Hermitian conjugation: hence, it is equivalent to charge conjugation, together
with complez conjugation and reversing the order of operators (or to star conjugation with
parity). The advantage over star conjugation is that it does not exchange the holomorphic and
anti-holomorphic sectors. However, it is more convenient to work with the BPZ conjugation

since it is a conformal transformation.

21.5 Mode expansion

21.5.1 Full system

Any field of weight (h, h) can be expanded in terms of modes Om,n as

_ Om,n
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Note that the modes Oy, ,, themselves are operators. The ranges of the two indices are such
that

0 periodic,

m+heZ+v, n+heZ+p, z/,17={ (21.93)

1/2 anti-periodic.
The values of v and ¥ depend on whether the fields satisfy periodic or anti-periodic boundary
conditions on the plane (for half-integer weights, the periodicity is reversed on the cylinder):

(’)(e%iz, Z) — e27ri1/ O(Z, Z), O(Z, e27ri2) — eZ7ril7 O(Z, 2) (2194)

Depending on whether the weights are integers or half-integers, additional terminology is
introduced:

o If h € Z+1/2, then one can choose anti-periodic (Neveu—-Schwarz or NS) or periodic
(Ramond or R) boundary conditions on the cylinder (reversed for the plane):

vp={0 N3 (21.95)
1/2 R

The indices are half-integers (resp. integers) for the NS (R) sector.

e Ifh € Z, periodic (or untwisted) boundary conditions are more natural, but anti-periodic
boundary conditions may also be considered:

v, = {0 untwisted (21.96)

1/2 twisted

The indices are integers (resp. half-integers) for the untwisted (twisted) sector.

The mode expansions have no branch cut (fractional power of z or z) for periodic fields
(bosonic untwisted or fermionic twisted). We will see explicit examples of such operators
later.

As discussed in Section 21.4.3, each operator has an associated charge-conjugated operator
O whose mode expansion is:

Ot
+ =\ m,n

m,n
A priori, the modes O;:,,n are not related to the modes Oy, ,,: we will obtain relations by

imposing some reality or Hermiticity conditions.

Discrete symmetries and conjugations Let’s consider the effect of the different trans-
formations from Section 21.4 on the modes. The strategy consists in comparing the result
of applying the transformation on the mode expansion with the mode expansion of the
transformed operator. We find:

o Parity (21.33) (if h = h):
QO Q= elCr=m=—n) o (21.98)

e BPZ conjugation (21.77):

im(h—h) g2mi(m-n) » o T+ 0
Ofnn—{e o m,—n  for I'* (a=0), (21.992)

gnth—htm-—m) oy for I~ (e =m).
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When the modes and/or weights are half-integers, it is important to write the phases
as (—1) = ™ and (+1) = e®™. However, to shorten the notations, we will often write

Oty = (1)P P (E1)™ " Oy . (21.99b)

There is no ambiguity as long as we keep both signs since we can always write them
in terms of ™. Moreover, this latter form is sufficient when ealing with the bosonic
string (except when introducing orbifolds).

o Hermitian adjoint (21.64):

Ofn=0% _. (21.100)
If the field is Hermitian (on the cylinder in Lorentzian signature) O = O, we have:
Ofin=0_m n. (21.101)
« Star conjugation (21.86):
Ok n = (D) P(ED)™ MO, (21.102)

using the same shortcut as in (21.99). We can check easily that

Opn = (OF, ). (21.103)

Note that these expressions work for integer and half-integers weights (h, i_z) and mode numbers
(m,n) (which cover the cases of the scalars, fermions, ghosts with all possible boundary
conditions). They also work for boundary fields upon properly relating the anti-holomorphic
modes to the holomorphic modes.

Computation — Equation (21.98)

. Omn _ Q0,02
Q0(z,2)Q =Q (Z W) 2= Z zmthznth

— ei(27r—a)(h—ﬁ) O(ei(27r—a) z, e—i(27r—a) Z)

i(2m—a)(h—h) Om’n _
mn (ei(27r—a)2) m+h (e—i(27r—a)z) n+h
B Z e—i(27r—a)(m—n)0m’n _ Z ei(27‘r—a)(m—n)0n’m
o zm+h yn+h B ym+hznth
m,n

m,n

=e€

The last equality follows by exchanging m <+ n. In the first line, remember that  acts
only on operators, not coordinates. When h = h, we obtain the desired relation.

Computation — Equation (21.99)
When deriving this relation, one has to be careful with phases: the simplest is to start
with the reflection (21.76) with a generic angle « from the parity transformation, and
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set o = 0,7 at the end:

t

02 =Y _ Omin__
2m+thznth

— ei(2ﬂ'—a)(h—ﬁ) (—1)h__ﬁ o (ei(zﬂ'—a) ’ e—i(?_w—oz))
22hz2h 2 Z
22h 52k

n (e—i(%—a)z) —m—h (ei(27r—a) 2) —n—h

_( 1 h— hz —i(2r—a)(m—n) Om

—m+hz n+h
m,n
_( 1h h§ :e (2r—a)(m—n) O—m, —-n
zm+hzn+h'

The last equality follows by changing the sum indices (m,n) — (—m, —n). The first line
must be understood as the mode expansion of the BPZ conjugated operator O whose
modes are O, ,,

Computation — Equation (21.100)

O(z E)T = § :h
) B 2m+hzn+ﬁ
m,n

+
a0 (3Tt -
72h ,2h, z 2 £~ g=mthy—nth Zm+hzn+h

The last equality follows by changing the sum indices (m,n) — (—m, —n).

Computation — Equation (21.102)
To simplify the derivation, we assume h, h, m,n € Z to avoid keeping track of the phases:

0*
O@2)" =) s
m,n ] ) 0;";’/ )
= EROr s ) = Y T

( 1)h h(:l:lm nz

m+hzn+h

The derivation for the general case can be performed as the one of (21.99) above by
reintroducing the phase a.
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21.5.2 Holomorphic sector

For a holomorphic field ¢(z), the mode expansion becomes

$(z)= zf_ﬁh. (21.104)

n€Z+h+v

Conversely, the modes can be recovered from the field through

bn = f ) (21.105)
Co

2mi

where the integration is counter-clockwise around the origin. The operators ¢, have a
conformal weight of —n (since the weight of z is —1).
The different conjugations act as:

o Parity (21.33) (if h = h): . B
QppQ = @ g (21.106)

assuming that there is an anti-chiral partner ¢(2) with modes ¢,,.

o BPZ conjugation (21.77):

$n = (1" (ED)" ¢—n. (21.107)
o Hermitian adjoint (21.64):
Pl =T ,. (21.108)
If the field is Hermitian ¢+ = ¢, we have:
¢ = p_n. (21.109)
e star conjugation (21.86):
¢ = (~1)" (1) 6. (21.110)

Remember that all signs £1 must be written as a power of e!™ when h and/or n are
half-integers.

Computation — Equation (21.107)
This equation can be derived in the same way as (21.99), but we provide an alternative
derivation by working directly with the mode, using the contour representation (21.99):

dz

B = (IFod)n = § 3221 0 g(2)

_ dz n+h—1 1 " 1
- f o (73) o(+)
_ A A 1
=(F }{ZWiz ¢(iz)

=y f 5 (il)"_hw—lqs(w)

2mi w
dw

— E ) f S ()

We have set w = +1/z such that

_jdv _ dw (21.111)
z wez w
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‘ and the minus sign disappears upon reversing the contour orientation.

Remark 21.7 (Hermitian adjoint in Lorentzian signature) Consider a left-moving
field ¢(t, o) in Lorentzian signature with mode expansion on the cylinder:

$(t,0) =D pne ), (21.112)

The Hermitian adjoint is
#(t, J)T - Z ¢L ein(t+o) — Z ¢T_n e—in(t+o) (21.113)
n n

Hence, if ¢ is Hermitian we have:

o, 0) =o(t,0) = ¢ =¢_,. (21.114)

We recover the same condition on the mode as we obtained using the Hermitian adjoint in
(21.100).

The mode expansion of the energy—momentum tensor is

Ly, dz "
T()=) 45 Ln= }{ o Tz, (21.115)
neEZ

where one recognizes the Virasoro operators as the modes. In most situations, the Virasoro
operators are Hermitian
Lt =L_,. (21.116)

The OPE (21.22) and (21.21) together with (21.9a) help to reconstruct the Virasoro algebra
(20.60) and the commutation relations between the L,, and the modes ¢, of a weight h
primary:

[Lin, 6] = (m(h— 1) = n) $rmyn. (21.117)

This easily gives the commutation relation for the complete field:
[Lim, ¢(2)] = 2™ (20 + (n + 1)h)$(2). (21.118)
We will often use (20.60) and (21.117) for m = 0:
[Lo,L_n]) =nL_,, [Loy, p—n] = np_p. (21.119)

This means that both ¢, and L, act as raising operators for Ly if n < 0, and as lowering
operators if n > 0 (remember that Ly is the Hamiltonian in the holomorphic sector). When
both the holomorphic and anti-holomorphic sectors enter, it is convenient to introduce the
combinations

LEf=1L,+L,, (21.120)

such that L(J{ is the Hamiltonian.
Finally, every holomorphic current j(z) has a conformal weight A = 1 and can be expanded
as )
N Jn
i) =2 (21.121)

n

By definition, the zero-mode is equal to the holomorphic charge

QL = Jo- (21.122)
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21.6 Hilbert space

In this section, we will describe the Hilbert space of general 2d CF'T, describing how to define
its states and inner-product. If the fields are expressed in terms of creation and annihilation
operators (which happens e.g. for free scalars, free fermions and ghosts), then the Hilbert
space has the structure of a Fock space. Examples will be given in Chapter 22.

The Hilbert space of the CFT is denoted by H. The SL(2, C)(-invariant) (or confor-
mal) vacuum” |0) is defined as the state which is invariant under the global conformal
transformations:

Lol0)=0, Li1|0)=0. (21.123)

While there are different notions of “vacuum” (see for example the energy vacuum (21.131)
in Section 21.6.1), the conformal vacuum is the basic building block of the Hilbert space.
It is unique and all other states in the Hilbert space are built by acting on |0) with fields.
Indeed, we will see in Section 21.6.1 that it is mapped to the unique identity operator
under the state—operator correspondence (however, there can be other states of weight 0, see
Remark 21.9).

The expectation value of an operator O in the SL(2,C) vacuum is denoted as:

(0) := (0|0|0). (21.124)

Correlation functions will be discussed in details in Section 21.8.

21.6.1 State—operator correspondence

The state—operator correspondence identifies every state |O) of the CFT Hilbert space with
an operator O(z, z) through

0) = lim O(2,2)[0) = O(0,0)[0). (21.125)

Z,Z2—

Such a state can be interpreted as an “in” state since it is located at 7 — —oo on the cylinder.
Focusing now on a holomorphic field ¢(z), the state is defined as

16) = lim 6(2) [0) = $(0) [0). (21.126)

For this to make sense, the modes which diverge as z — 0 must annihilate the vacuum. In
particular, for a weight h field ¢(z), one finds:

Vn>—h+1: ¢,[0)=0. (21.127)

Thus, the ¢, for n > —h + 1 are annihilation operators for the vacuum |0), and conversely
the states ¢, with n < —h + 1 are creation operators. As a consequence, the state |¢) is
found by applying the mode n = —h to the vacuum:

|¢) = ¢-n10) = 7{ dz 9(z) |0) . (21.128)

21z
Since L_; is the generator of translations on the plane, one finds
$(2) 0) = e*F-1¢(0)e™*L1 |0) = &L |9). (21.129)

The vacuum |0) is the state associated to the identity 1. Translating the conditions
(21.127) to the energy—momentum tensor gives

Vn>-1: L,|0)=0. (21.130)
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This is consistent with the definition (21.123) since it includes the sl(2, C) subalgebra.

If h < 0, some of the modes with n > 0 do not annihilate the vacuum: (21.119) implies
that some states have an energy lower than the one of |0). One can decrease the energy
by acting repetitively with the modes ¢,~¢. If ¢ is bosonic, then the sequence never ends
and states with arbitrarily negative energies exist. Bosonic operators with negative h are
dangerous because they lead to an infinite negative energy together with an infinite degeneracy
(from the zero-mode).

If ¢ is fermionic, then the sequence ends for some state |[2) with lowest energy, and thus
called the energy vacuum:

Vig)et:  (QLo|Q) <(4[Lo|$)- (21.131)

This vacuum defines a new partition of the non-zero-modes operators into annihilation and
creation operators. If there are zero-modes, i.e. n = 0 modes, then the vacuum is degenerate
since they commute with the Hamiltonian, [Lo, ¢o] = 0 according to (21.119). The partition
of the zero-modes into creation and annihilation operators depends on the specific state
chosen among the degenerate vacua. The energy agq of |Q2), which is also its Ly eigenvalue

Lo |9) := aq |Q), (21.132)

is called zero-point energy.
The conjugate vacuum is defined by BPZ or Hermitian conjugation

(0] := |0)* = |0) (21.133)
since both leave the identity invariant. It is also annihilated by the sl(2, C) subalgebra:
0|Lo=0, (0|Li1 =0. (21.134)

Since there are two kinds of conjugation, two different conjugated states can be defined. They
are also called “out” states since they are located at 7 — oo on the cylinder (Figure 20.2).

21.6.2 Conjugated states
The charge conjugated state is simply given by:
|¢7) == ¢7(0)]0). (21.135)

Taking the BPZ conjugation of the conditions (21.127) tells which modes must annihilate
the conjugate vacuum:
Vn<h—1: (0|¢,=0. (21.136)

In particular, one finds for the Virasoro operators:
Vn<1: (0|L,=0. (21.137)

This can also be derived directly from (21.139) by requiring the action of an operator on
the conjugate vacuum (0| to be well-defined. All conditions taken together mean that the
expectation value of the energy—momentum tensor in the conformal vacuum vanishes:

(0] T'(2) |0) = 0. (21.138)

In particular, this means that the energy vacuum |Q), if different from |0), has a negative
energy.

265



From the BPZ conjugation (21.77) of an operator, we can define a bra state as the BPZ
conjugate of a ket state:

(@l = (18))" =01 6(0)" = (0 I* 0 $(0) = (¥1)" (0] §(c0). (21.139)

By convention, for an operator, the symbol appearing in the bra is the same as the one
appearing in the ket. However, if the label is the eigenvalue of some operator, then the
BPZ conjugate may be associated to a different eigenvalue (see the momentum states in
Section 22.1 for an example). In terms of the modes, one has

(@] = (£1)"(0| ¢ (21.140)
Since the BPZ conjugation is an involution, we can also obtain the ket state from the bra:
¢
8) = ({¢]) . (21.141)

Later in this chapter, see (21.158), we will introduce the notion of conjugate state (simply
“conjugate”).

Computation — Equation (21.139)

($(0)10))" = lim (0] $(w)" = (0] I* © $(0)
= (FD)" lim 2°"(0] ¢(2) = (F1)"(0] ¢(c0)

Computation — Equation (21.140)

(9] = (FV" lim (0] 6(2) = (FD" lim 30| 27
= (1) Jim 3701 22 = (1) 0l
n>h

The third equality follows by using the conditions (21.136).

Given the Hermitian conjugation (21.64) of an operator, we obtain the conjugation of a
state as:

t
(@' = (1#))" = F1)" (0] ¢*(0)" = (0] 6" (c0) = (F1)" ("], (21.142)
where we have written the result in different forms, in terms of the charge conjugate operator

(21.49), BPZ conjugation (21.77) and of the BPZ conjugate of the charge conjugated state
(21.135). Then, expanding the field in terms of the modes gives

(6] =(0| ¢} - (21.143)

Computation — Equation (21.142)

(¢(0)[0))" = lim (0| p(w)f = lim % (0] ¢+ (l_)

= (F1)" (0| I* 0 ¢+ (0) = (F1)" (0] 6™ (0)*
= lim 2 (0] ¢ (2) =(0] 6" (c0).
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We have used the definition (21.64) to get the second equality, then (21.77) to get the
second equality on the second line. The third line follows by setting w = 1/2, and the
last equality by using the definition (21.83) of an operator at infinity.

Next, using star conjugation, we obtain the star conjugated state:

16*) == (16))" = (F1)" 67 (0)[0) = (F1)" |¢T). (21.144)

In terms of modes, we get:

%) = (F1)" 7, 10). (21.145)
The expression (21.144) shows that, in fact:
[¢7) = 16") = (F1)" 167). (21.146)
Indeed, by applying (21.141) on (21.142), we get:
) = ((')" = (F1)" 67 (0) 0) = |#"). (21.147)
This can also be obtained by working on the modes since
(¢%,)" = (DD ¢ = ()" (F) "¢ = (F1)"} (21.148)
Similarly, as a consistency check, we find:
(@' =(¢"| = (FV)™(", (21.149)
where this follows from
("] = (0] T* 0 $(0)* =(0] $(0)", (21.150)

since ¢(z)* evaluated at z = 0 must act on |0), the corresponding bra state is obtained by
taking its BPZ conjugate, which cancels the one inside the star conjugation. Hence, we will
use both notation interchangeably, using one rather than this other if we want to stress the
Hermitian or reality properties. With BPZ conjugation defined by I~, we can even write
indifferently |¢*) or ot

A state is said to be real (imaginary) if it equals (minus) its star conjugate:

real: |@)* = |@), imaginary: |¢)* = —|¢). (21.151)
We can also rephrase this as a relation between BPZ and Hermitian conjugations:
) =) = (9l =4l (21.152)

and written more explicitly as:

) = (F)™ |¢). (21.153)

Note that the reality coincides (resp. is opposite) with Hermiticity when using I~ (resp. I™T)
for the BPZ conjugation.®

8In order to obtain agreement, Polchinski [237, p. 203] introduces a factor of i* in the mode expansion of
&(z), which gives an additional sign (—1)" after complex conjugation, compensation for the factor above
when using IT. One problem with this definition is that the ghost c(z) (whose expansion does not contain
i) is imaginary, and thus anti-Hermitian (in Euclidean signature) according to Polchinski. However, given
(4.3.17) and according to the definition below (6.7.31), ¢(z) is Hermitian (in Lorentzian signature). It seems
preferable to introduce different notions instead, and to not introduce factors of i in mode expansions.
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Computation — Equation (21.144)

(#(0)10))" = lim ¢(2)* |0) = (F1)" lim ¢* (£ 2) [0) = (F1)" ¢7(0)[0).

21.6.3 Inner-products
BPZ inner-product The BPZ inner-product of two states A and B is defined by”’

(A, B := (A|B). (21.154a)

From the state-operator correspondence (Section 21.6.1) and using (21.139), this can be
rewritten as an expectation value:

(4, B) = (0]A(0)*B(0)|0) = (0]1* o A(0)B(0)[0) = (F1)"4 (0| A(c0)B(0)[0) .  (21.154b)
It is bi-linear and non-degenerate:
(A|B + XC) = (A|B) + A (A|C),

(A+ XC|B) = (A|B) + A (C|B), (21.155)
(AIB)=0 VY]A)eH = |B)=0,

where C is another state. We have the following important identities:
(A,B) = (-1)4lIBI (B, A), (21.156a)
(A,0B) = (-1)/°l141 (0t A, B), (21.156b)

where O is an operator. Note that the first relation implies the bi-linearity of the product.
Since correlation functions are invariant under the transformations I*(z) (see Section 21.8),

we have:
(A, B) = (A", B') = (0|I* o (I* o A(0)B(0))|0). (21.157)

Given a set of states ¢;, we define the conjugate (or dual) states ¢ such that
(9i1¢5) = bij (21.158)
(they must not be confused with the BPZ or Hermitian conjugate states).

Computation — Equation (21.156)
The first relation is derived as:

(4, B) = (0] A(0)*B(0)|0) = (0](A(0)'B(0))"|0)
= (0]A(0)B(0)"[0) = (—1)"4!15! (0| B(0)* A(0)[0) -

In the second equality, we have used (21.157), in the third, that I o I* is the identity.
In the fourth step, we have exchanged the order of the operators (such that they are
radially ordered), the sign appearing if both operators are Grassmann-odd.

91n closed string theory, the inner-product will be defined with an additional ghost insertion.
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The second relation is found in a similar fashion:

(A,0B) = (0|A(0)'0B(0)|0) = (—1)!°II4l (0]0.A(0)"B(0)|0)
= (—1)1°1141 (0] (0 A(0)) B(0)|0) .

Hermitian inner-product The Hermitian inner-product is defined by:
(A, B) := (AT|B) = (A, B). (21.159a)

This can be rewritten in several equivalent expressions, using the state-operator correspon-
dence (Section 21.6.1) and (21.142):

(4, B) = (F1)"* (A*|B) = (0]A(0)' B(0)|0)

= (:Fl)hA <0|I:l: o A+(0)B(0)|0> _ <0|A+(OO)B(O)|O> . (21159b)

where we recall that AT is the charge-conjugate of A, (21.135). It is sesquilinear and

non-degenerate:
(A,B+)XC)=(A,B)+ X (4,0),

(A+XC,B) = (A,B) + X\*(C, B), (21.160)
(A,B)=0 V|A)eH = |B)=0,

where C is another state. Sesquilinearity follows from'’

(4,B) = (B,A)",
(21.161a)
(A,0B) = (0'A, B),
The first relation can be also written as:
(A'|B) = (B4, (21.161b)

It is also useful to write the effect of the Hermitian adjoint on the BPZ inner-product
(21.154) with a generic operator insertion:

(A|0|B)T = (A|0|B)* = (Bf|0t|AlY. (21.162)

Computation — Equation (21.161)
The first relation is derived as follows:

(A’ B)T = (A’ B)*
— (01A(0)"B(0)[0)" = (0](A(0)' B(0))"|0)
= (0|B(0)T A(0)|0) = (B, A),

where we used (21.133) after the third equality.
For the second, we have:

(4,0B) = (0]A(0)! ©B(0)[0) = (0| (01 4(0))" B(0)|0) = (O'A, B).

10We will see that there is an additional minus sign for the closed string.

269



Computation — Equation (21.162)

(Alo|B) = (A|o|B)*
= (0](A4(0)*©B(0))|0) = (0| B(0)TO1 4(0)*|0)
= (BT|O1|AT).

Note that we can also write (21.162) using star conjugation (21.86):
(A|O|B)* = (A|0|B)' = (A|0|B)* (21.163)

since the inner-product is invariant under BPZ transformations. Remembering that |At) =
|A*), see (21.146), we can also write the equivalent expressions:

(A|O|B)* = (B*|0t|4*) = (-1)IBlI%l (0> B*| A*), (21.164)

We will use (21.162) or (21.164) depending on the context. In particular, (21.164) will be
useful to prove the reality of the free SFT action.

Computation — Equation (21.164)
While this equation immediately follows from (21.162), let’s it derive using the properties
of star conjugation:

(A|O|B)* = (0|(A(0)* ©B(0))"[0) = (0] B(0)* O*(A(0)*) |0)
= (0/( B 0*(A(0)")") 10) = (0I( B(©)* ©*) A(0)* 0}
(01(B(0)*)" O A(0)*|0).

t

At the end of the first line, the operators are not radially ordered and (0] B(0)* can not
be simplified since B(0)* is defined to act on |0): we need to perform an additional BPZ
transformation with I*, using that the inner-product is invariant (21.157).

21.7 Normal ordering

The normal ordering of an operator with respect to a vacuum corresponds to placing all
creation (resp. annihilation) operators of this vacuum on the left (resp. right). From this
definition, the expectation value of a normal ordered operator in the vacuum vanishes
identically. The main reason for normal ordering is to remove singularities in expectation
values.

Given an operator ¢(z), we define two normal orderings:

o The conformal normal order (CNO) :0: is defined with respect to the conformal vacuum
(21.123):
(0]:0:10) = 0. (21.165)

e The energy normal order (ENO) ;O is defined with respect to the energy vacuum
(21.131):
Q10511 = 0. (21.166)
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We first discuss the conformal normal ordering before explaining how to relate it to the
energy normal ordering.

Given two operators A and B, the simplest normal ordering amounts to subtract the
expectation value:

:A(2)B(w): = A(z)B(w) — (A(2)B(w)). (21.167)
This is equivalent to defining the products of two operators at coincident points via point-
splitting:
:A(2)B(2): = lim (A(z)B(w) - (A(z)B(w))). (21.168)
While this works well for free fields, this does not generalize for composite or interacting
fields.

The reason is that this procedure removes only the highest singularity in the product: it
does not work if the OPE has more than one singular term. An appropriate definition is

[A(2)B(w): = A(2)B(w) — A(2)B(w) = ¥ (2 - w)"{AB}_n(2), (21.169)
neN

where the contraction between A and B is defined in (21.19), and the second equality comes
from (21.18).

Then, the product evaluated at coincident points is found by taking the limit (in this
case the argument is often indicated only at the end of the product)

:AB(2): :=:A(2)B(z): := &)1_1& :A(2) B(w): = {AB}o(2). (21.170)

Indeed, since all powers of (z — w) are positive in the RHS of (21.169), all terms but the
first one disappear. The form of (21.170) shows that the normal order can also be computed

with the contour integral
:AB(z): =]{ d_w M (21.171)
c, 2T z—w

It is common to remove the colons of normal ordering when there is no ambiguity and, in
particular, to write:

AB(z) :=:AB(z2):. (21.172)
In terms of modes, one has
:AB:,,
:ABim = > AuBm_n+ > BpnonAn. (21.173b)
n<—hag n>—ha

This expression makes explicit that normal ordering is non-commutative and non-associative:
:AB(z): # :BA(z):, :A(BC)(2): # :(AB)C(2):. (21.174)

The product of normal ordered operators can then be computed using Wick theorem. In
fact, one is more interested in the contraction of two such operators in order to recover the
OPE between these operators: the product is then derived with (21.169).

If A; (i =1,2,3) are free fields, one has

A1(2):A2A3(w): = :A1(2)AsAs(w): + A1(2) :As Az(w):,

il (21.175)
Ai(z): Az Az(w): = A1(2)Az(w) :As(w): + A1(2)As(w) 1Az (w):.
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If the fields are not free, then the contraction cannot be extracted from the normal ordering.
Similarly if there are more fields, then one needs to perform all the possible contractions.
Given two free fields A and B, one has the following identities:

A(z):B(w)"™: = nA(T)B(w) :B(w)" 1, (21.176a)
A(z) :eB®): = f@(w) B (21.176b)
:eA(®): :eBW): = exp (A(T)B(w)) AP eBW); (21.176¢)

The last relation generalizes for a set of n fields A;:
ei: = rexp (Z Ai>: exp Z(AiAj), (21.177a)
i=1

i<j

<ﬁ :eA":> = exp Z(AiAj>. (21.177Db)

=1

n
1=

1
Computation — Equation (21.176b)

wBw). _ 1 . n., _ 1 . n—1,

A(z) eB®): = A(z); —iB(w)": = A(z)B(w)zn: ey :B(w)" L.

Computation — Equation (21.176c¢)

1
:e4(2); eBW); — Z il (A(z)™::B(w)™:

)
1

= > W B AOBw) A B

|
(]
RS
5=
—
=

The factorial k! counts the number of possible ways to contract the two operators.

The general properties of normal ordered expressions are identical for both vacua: what
differs is the precise computation in terms of the operators (or modes). Hence, the energy
normal ordering can be defined in parallel with (21.173), but changing the definitions of
creation and annihilation operators:

. . TAB(2) i,
*AB(Z) * = Z zrn-f-h%’ (211783)
"ABim =) AnBn_n+ Y Bm_nAn (21.178b)
n<0 n>0

To simplify the definition we assume that Ag is a creation operator and it is thus included in
the first sum (this must be adapted in function of which vacuum state is chosen if the latter
is degenerate).
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The relation between the normal ordered modes is

ha—1
tABim = iABim + Y _ [Bmin, A_n). (21.179)

n=0

Computation — Equation (21.179)

iABim= Y ApBm n+ Y, Bmond,
n<—ha n>—ha
ha—1

Z A—an+n + Z Bm—nAn + Z Bm+nA—n
n=0

n>ha n>0

ha—1
Z A—an+n + Z Bm—nAn + Z [Bm—i-na A—n]
n>0 n>0 n=0
ha—1
PABim+ Y [Bmin, Aul.

n=0

The choice of the normal ordering for the operators is related to the ordering ambiguity
when quantizing the system: when the product of two non-commuting modes appears in the
classical composite field, the corresponding quantum operator is ambiguous (generally up to
a constant). In practice, one starts with the conformal ordering since it is invariant under
conformal transformations and because one can compute with contour integrals. Then, the
expression can be translated in the energy ordering using (21.179). But, knowing how the
conformal and energy vacua are related, it is often simpler to find the difference between the
two orderings by applying the operator on the vacua.

21.8 Correlation functions

The n-point correlation function on the sphere (complex plane) of operators O; (i =1,...,n)
is defined by
<H Oi(zi,fi)> = /d\Il e ST 0i(2i, 2), (21.180)
=1 =1

choosing a normalization such that (1) = Z, where Z is the partition function. The path
integral defines the time-ordered product on the cylinder of the corresponding operators. As
a consequence, in the operator formalism, correlation functions are given by the expectation
value (21.124) of radially-ordered operators in the conformal vacuum (21.123):

<H (')i(zi,fi)> = <0|R(H0i(zi,5i)) 0) , (21.181)

where radial ordering was defined in (21.6). In general, we will omit the radial-ordering
symbol.
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21.8.1 Constraints from conformal invariance

Invariance under global transformations leads to strong constraints on the correlation func-
tions. For quasi-primary fields, they transform under SL(2,C) as

<i1jl(9i(zz”5i)> = ll;[l (df( z)) (jﬁ zz)) ] <HO zz))> (21.182)

Considering an infinitesimal variation (20.52) yields a differential equation for the n-point
function

<H O;(z;, zz)> Z (RiBsv(2i) + v(2:)0; + c.c.) <H O;(z;, 2@)> =0, (21.183)

i=1
where 0; := 0,, and v is a vector (20.39) of sl(2,C). These equations are sufficient to
determine completely the forms of the 1-, 2- and 3-point functions of quasi-primaries:
((’)i(zi, 2,)) = (5}”,05;”’0, (21184&)
~ ~ i
(Oi(2i, 2)0j(2),25)) = Oni,h;Ohi oy 5 g (21.184b)
i %ij
_ _ _ Cz]k
<0i(zi’zi)oj(zjizj)ok(zk’zk» = hi+hj—hk hj+he—h; hithr—h;
z..
K ik L (21.184c)
X _hi+hj—hy _h;+hi—h; h +he—h;’
ij zjk: Zki
where we have defined
Zij = 2y — Zj. (21185)

The coefficients C;;i, are called structure constants and the matrix g;; defines a metric
(Zamolodchikov metric) on the space of fields. The metric is often taken to be diagonal
gij = 0;;, which amounts to use an orthonormal eigenbasis of Ly and Ly. The vanishing of
the 1-point function of a non-primary quasi-primary holds only on the plane: for example the
value on the cylinder can be non-zero since the map is not globally defined — see in particular
(21.197).

We can write the BPZ and Hermitian products (21.154) and (21.159) as limits of correla-
tion functions

(@ilgs) = (FD)™ lim_ 22" (0] ¢i(2)$;(w) [0) = gy, (21.186a)
w—0
(66 ¢5) = lim 22" (0] ¢} (2);(w) [0) . (21.186b)
w—0

From the state—operator correspondence, the action of one operator on the in-state can be
reinterpreted as the matrix element of this operator using the two external states, or also as
a 3-point function:

(@il 95(2) [¢r) = (ED)™ Tim w?™ (ps(w);(2)¢x(0)). (21.187)
In particular, we have:

(9il #;(1) |#x) = Ciji- (21.188)

Remark 21.8 (Logarithmic CFTs) Logarithmic CFTs display a set of unusual proper-
ties [103, 104, 111, 122, 161]. In particular, the correlation functions are not of the form
displayed above. The most striking feature of those theories is that the Lo operator is
non-diagonalisable (but it can be set in a Jordan normal form).
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Remark 21.9 (Fake identity) Usually, the only primary operator with h = h =0 is the
identity 1. While this is always true for unitary theories, there are non-unitary theories
(c <1 Liouwville theory, SLE, loop models) where there is another field (called the indicator,
marking operator, or also fake identity) with h = h =0 [18, 61, 124, 138, 225, 245, 246].
The main difference between both fields is that the identity is a degenerate field (it has a null
descendant), whereas the other operator with h = h = 0 is not. Such theories will not be
considered in this review. Operators with h = h = 0 can also be built by comining several
CFTs, and they play a very important role in string theory since they describe on-shell states.

Finally, the 4-point function is determined up to a function of a single variable z and its
complex conjugate:

4
1
<H Oi(zi, 2@)> = f(z, %) H it —h/3 X C.C. (21.189)
=1

i<j Zij
where
4 B 4
hi=) hi, h:=) h. (21.190)
i=1 i=1
The cross-ratio z is SL(2, C) invariant and reads
g = 22234 (21.191)
213224

The interpretation is that the SL(2, C) invariance allows to fix 3 of the points to an arbitrary
value, and the final result does not depend on this choice.

Finally, we want to investigate the action of star conjugation (Section 21.4.5) on correlation
functions. We find the identity:

(O(21,21) - O(2n, Zn)) = (O(2n, Zn)* -+ O(21,21)")"

H(:F1)’“—’_”l (OF (£2n, £2,) - - OF (21, £21) ),

i=1

(21.192)

where the choice of sign is correlated with the sign of I* in the definition of the BPZ
conjugation. This relation is a consequence of having a Hermitian product (needed for
the Hilbert space) invariant under I* transformations [224]. In other works [89, 199], it is
assumed to hold for defining a consistent string theory, and other properties (such as the
existence of a Hermitian product) are derived. It is related to the CPT theorem for a 2d
Euclidean CFT, but we will not investigate the relation further.

21.9 CFT on the cylinder

According to (20.46), the relation between the field on the cylinder and on the plane is
or

¢(2) = ( L )h 2 poyi(w) (21.193)

(quantities without indices are on the plane by definition). The mode expansion on the

cylinder is N 2 N )
Pyt = (f> D pne TV = (f) > z—: (21.194)

neZ neZ
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Using the finite transformation (21.24) for the energy—momentum tensor T', one finds the
relation

Topi(w) = (%)2 (T(z)z2 - i) . (21.195)

The vacuum expectation value (Casimir energy) is then proportional to the central charge:
cm?

(Tey) = — 572 (21.196)

This energy is provided by the curvature of the cylinder. For the Ly mode, one finds

Cc
(Lo)eyt = Lo = 57 (21.197)

and thus the Hamiltonian is

c+c

H = (Lo)eyt + (Lo)eyt = Lo + Lo — 2

(21.198)

21.10 References

o Normal ordering is discussed in details in [69, chap. 6] (see also [34, sec. 4.2, 237,
sec. 2.2]). The difference between the different definitions are described in [237, chap. 2,
69, sec. 6.5].

e The most useful references for the different conjugations are [89, 224, 268, 317]. For
more details, see:

— Hermitian conjugation [69, sec. 6.1.1, sec. 2.4 89, sec. 3.1, 112, 144, sec. 3, 224,
237, p. 202-3, p. 336, 268, sec. 4, 317, sec. 2.2] (useful discussions can also be
found in [163, sec. 2, 190, sec. 2.1, 199, sec. 3]).

— BPZ conjugation [89, sec. 3.1, 112, sec. 2.3, 215, p. 35, 268, sec. 4, 317, sec. 2.2].
— star conjugation [89, sec. 3.1, 112, sec. 2.5, 156, 215, p. 35, 268, sec. 4] (for the
concept of reality, see also [37, p. 26]).

e The BPZ and Hermitian inner-products are discussed in [89, sec. 3.1, 112, sec. 2, 317,
sec. 2.

¢ Discrete symmetries are discussed in:

— parity [34, sec. 3.3, 112, sec. 5.1, 237, sec. 1.4].

— time-reversal [144] (for the choice for the phase, see [268, sec. 4, 224]).
— charge conjugation [107, 190, sec. 2.1].

— strong reflection [224] (see also [187]).

CPT symmetry [199, sec. 3, 224] (see also [2, sec. 11.6, 80, sec. 13.4, 118, 187] for
discussions in general QFT, and [89, sec. 3.1, 223, 284, p. 886-887, 289, 309, app.]
for 2d CFT).
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Chapter 22

CFT systems

This chapter summarizes the properties of some CFT systems. We focus on the free scalar
field and on the first-order bc system (which generalizes the reparametrization ghosts). For
the different systems, we first provide an analysis on a general curved background before
focusing on the complex plane. This is sufficient to describe the local properties on all

Riemann surfaces g > 0.

22.1 Free scalar

22.1.1 Covariant action

The Euclidean action of a free scalar X on a curved background g, is

K
Yz

S / d*z\/g 9" 8,X8,X,

where £ is a length scale' and

. +1 spacelike Ve = +1 spacelike
" 1-1 timelike ’ I B timelike

denotes the signature of the kinetic term. The field is periodic along o

X(r,0) ~ X(7,0 + 2m).

The energy—momentum tensor reads

€ 1
T, = -7 0,X0,X — 3 9 (0X)?|,

and it is traceless
T[f =0.

The equation of motion is
AX =0,

where A is the Laplacian (A.37).

ITo be identified with the string scale, such that o = £2.
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The simplest method for finding the propagator in flat space is by using the identity

(assuming that there is no boundary term)

0= / dx JXL@ (e_S[X]X(a’)) ,

which yields a differential equation for the propagator:
(02X (0)X (o)) = —2mel? 6@ (0 — o).
This is easily integrated to
el?

(X(0)X (")) = =5 Injo — o’

Computation — Equation (22.9)
By translation and rotation invariance, one has

(X (o)X (c")) = G(r), r=lo—od|

In polar coordinates, the Laplacian reads
1
AG(r) = - O, (rG'(r)).

Integrating the differential equation (22.8) over d?c = rdrdd yields

— 2mel? = 277/ dr’'r’ x L O (r'G'(r")) = 2mrG'(r).
0

,r/

The solution is
G'(r) = —ef’Inr

and the form (22.9) follows by writing

1 1
Inr = ilnr2 = Eln|a—a'|2.

The action (22.1) is obviously invariant under constant translations of X:

X — X+a, a€R.

The associated U(1) current” is conserved and reads

oc i

M': i —_—
JP 2me(‘9(8ﬂX) 7

¢"8,X,  V,J*=0.

On flat space, the charge follows from (A.32):

_ 1 o_ 1 0
P=5- do J _27r€2/d06 X.

(22.7)

(22.8)

(22.9)

(22.10)

(22.11)

(22.12)

(22.13)

(22.14)

(22.15)

(22.16)

(22.17)

This charge is called momentum because it corresponds to the spacetime momentum in string

theory.

2The group is R but the algebra is u(1) (since locally there is no difference between the real line and the

circle).
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Moreover, there is a another topological current

~ 1
Tt = =i, = 5 &9, X, (22.18)
which is identically conserved:
V,J* o €[V, V,]X =0 (22.19)

since [V, V,] = 0 when acting on a scalar field. Note that JH is the Hodge dual of J#. The
conserved charge is called the winding number and reads on flat space:

27

1 ~ 1
w=— [doJ’ = doe 8, X

o =0t |, (X(r,2m) — X(1,0)). (22.20)

T 2me2?
Remark 22.1 (Normalization of the current) The definition of the current (22.16) may
look confusing. The factor of i is due to the Euclidean signature, see (A.34a), and the factor
of 21 comes from the normalization of the spatial integral. We have inserted € in order to
interpret the conserved charge p as a component of the momentum contravariant vector in
string theory.

To make contact with string theory, consider D scalar fields X*(z*). Then, the current
becomes

JH = ﬁ a0 X, (22.21)

a

where the position of the indices is in agreement with the standard form of Noether’s formula
(A.34a) (a current has indices in opposite locations as the parameters and fields). Since we
have noo = —1 = €x,, we find that J* = ex, J¢' has no epsilon after replacing the expression
(22.17) of J§'.

The transformation X% — X%+c* is a global translation in target spacetime: the charge p*
is identified with the spacetime momentum. The factor of i indicates that p® is the Fuclidean
contravariant momentum vector by comparison with (A.7).

The convention of this section is to always work with quantities which will become
contravariant vector to avoid ambiguity.

22.1.2 Action on the complex plane

In complex coordinates, the action on flat space reads

€

§= 2ml?

/ dzdz0,X0: X, (22.22)
giving the equation of motion:
0,0;X =0. (22.23)

This indicates that 0,X and 9;X are respectively holomorphic and anti-holomorphic such
that
X(z,2) = X1(2) + Xgr(2), (22.24)

and we will remove the subscripts when there is no ambiguity (for example, when the position
dependence is written):

X (z) := Xr(2), X (2) .= Xr(2). (22.25)

It looks like X,(z) and X (%) are unrelated, but this is not the case because of the zero-mode,
as we will see below.
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The U(1) current is written as
i = i

where we used the relations J, = J?/2 and J; = J*/2. The equation of motion implies that
the current J is holomorphic, and J is anti-holomorphic:

87=0, oaJ=0. (22.27)

The momentum splits into left- and right-moving parts:

1 1 -
P =DPL + PR, pL =5 P dzJ, pPrR=—7— ¢ dzJ. (22.28)

2mi 2mi
The components of the topological current (22.18) are related to the ones of the U(1)

current: .
i

~ i ~ _
As a consequence, the winding number is
W =Dpr, — PR- (22.30)
Note that we have the relations
+w —w
pL = p_2 ; PR = p_2 ) (22.31a)
p’+w’=p] +p%,  2pw=p] — Dk (22.31b)
The energy—momentum tensor is
€ — €
T:=T,, = 2 0,X0,X, T:=T5; = 2 0:X0:X, T.; =0. (22.32)

Since the 8,X (8:X) is (anti-)holomorphic, so is T'(z) (T(Z)). Since the energy—momentum
tensor, the current and the field itself (up to zero-modes) split in holomorphic and anti-
holomorphic components in a symmetric way, it is sufficient to focus on one of the sectors,
say the holomorphic one.

The other primary operators of the theory are given by the vertex operators Vj(2):*

Vi(2, 2) = :elkX(=2) (22.33)

Remark 22.2 (Plane and cylinder coordinates) The action in w-coordinate (cylinder)
takes the same form as a result of the conformal invariance of the scalar field, which in
practice results from the cancellation between the determinant and inverse metric. As a
consequence, every quantity derived from the classical action (equation of motion, energy—
momentum tensor. ..) will have the same form in both coordinate systems: we will focus on
the z-coordinate, writing the w-coordinate expression when it is insightful to compare. This is
not anymore the case at the quantum level: anomalies may translate into differences between
quantities: to differentiate between the plane and cylinder quantities an index “cyl” will be
added when necessary (by convention, all quantities without qualification are on the plane).

3The € in the exponential is consistent with interpreting X and k as a contravariant vector.
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22.1.3 OPE
The OPE between X and itself is directly found from the propagator:

el?
X (2) X (w) ~ —5 In(z — w). (22.34)

By successive derivations, one finds the OPE between X and 0X

e? 1
and between 0X with itself
€el? 1

The invariance under the permutation of z and w reflects the fact that X is bosonic and that
both operators in (22.36) are identical.
The OPE between 0X and T allows to verify that the field 0X is primary with h = 1:

0X(w) , 0(0X(w))

T(z)0X (w) ~ = w)? o (22.37)
The OPE of T with itself gives
T(2)T (w) ~ % G _1w)4 + (j:i(gz + ‘27}11‘2 (22.38)
which shows that the central charge is
c=1 (22.39)
One finds that the operator 9" X has conformal weight
h=n (22.40)
since the OPE with T is
T X (w) ~ - + R EW) | 9" X(w)) (22.41)

(z —w)? z—w

where the dots indicate higher negative powers of (z — w). These states are not primary for
n > 2. Explicitly, for n = 2, one finds

20X(w) 282X 9(8°X(w))

T(2)0°X (w) ~ 22.42
@FXW) ~ s mw T e (22.42)
The OPE of a vertex operator with the current J is
_ k Vi(w,w)
J(2) Vi (w, w) 5 o (22.43)

This shows that the vertex operators Vj, are eigenstates of the U(1) holomorphic current with
the eigenvalue given by the momentum (with a normalization of £2). Then, the OPE with T

hi Vk(w,ﬁ)) " 8Vk(w,w)

T(2) Vi (w,w) ~ (z — w)? z—w

(22.44)
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together with its anti-holomorphic counterpart show that the Vj are primary operators with
weight

_ 212 p2.2 212
(i, hie) = (6Z4k ’e€4k ) , Ap = eﬁzk , sk =0. (22.45)

Note that classically hy = 0 since £ ~ h [301, p. 81]. The weight is invariant under k — —k.
Finally, the OPE between two vertex operators is

Vit (w, )

Vi (2, 2) Vi (w, w) ~ (7 —w)-FF ]2

(22.46)

where only the leading term (non-necessarily singular) is displayed. In particular, correlation
functions should be computed for ekk’ < 0 in order to avoid exponential growth.

Computation — Equation (22.37)

0X (2)

T(:)9X (w) = — & DX (2)0X (2): OX () ~ —% 0X (2)0X (2): 0X (w) ~ =t

The result (22.37) follows by Taylor expanding the numerator.
Computation — Equation (22.38)
1 .

2
] 1
~ éi‘l :0X (2)0X (2)::0X (w)0X (w): + :8[7((z)8X(z): :BX(w)BB((w):

T(2)0X (w) = — :0X(2)0X (2): :0X (w)0X (w):

+:0X(2)0X (2): :0X (w)0X (w): + perms

1 1 1 1
~2X 1 —(z —w)? —4x Tﬂzm :0X (2)0X (w):
1 1 2 1 ) ‘
e T B wp (X @)X W)+ ( — w) P X ()X (w):)

Computation — Equation (22.41)

T(2)0" X (w) ~ ot —(5)5(132

0X(z)

~nl Z2E)

(z — w)n-i-l

g o G T 0X )

+ % (z— w)"@”(@X(w))).

282



Computation — Equation (22.43)
Using (21.176b), one has:

DX (2)Vie(w, @) ~ i€k DX (2)X (1) Vi (w, @) ~ iek (—%ﬁ) Vi(w, @).

Computation — Equation (22.44)

. .
T(Z)Vk(’w,’w) ~ _£_2 6X(Z)8X(Z) -el€ w,B),

iek 1
2 z—w
@ 1

2 z—w

o | —
X (z) -plek X (w,). _ e% X (z) :aX(z)exekX(w,w):

) _ T
(:8X(z) glekX(w,@), 4 0X(2) :e“kX(w’w):)

iek :0X (z)elckX (WD),
2 z—w
292 = . iek X (w,w).
L Vie(w, w) +iek :0X (w)e 3
4 (z—w)? z—w

In the first line, we consider a single contraction (hence, there is no factor of 2): the
reason is that considering the contractions symmetrically and not successively counts
twice the first term of the last line. Indeed, there is only one way to generate this term.
It is also possible to achieve the same result by expanding the exponential.

Computation — Equation (22.46)
Using (21.176¢) and keeping only the leading term, one has:

1 . N .y _
Vie(2, 2) Vi (w, ) ~ exp ( — kk' X (2,2) X (w, w)) elehX (2,2) glek’ X (w, @),

152 _
~ (z = w) R E2 V0 (w, D).

22.1.4 Mode expansions
Since X is holomorphic and of weight h = 1, it can be expanded as:*
s e —n—1 Iy _ _: e =~ s—n—1
8X——1\/5%anz ) 0X = —1\/57%(1”2 , (22.47)

where an individual mode can be extracted with a contour integral:

3 dz n—1 = __: dz n—149
oy = 1% 7 2 0X (2), an=1¢ o -z 0X (2). (22.48)

4The Fourier expansion is taken to be identical for € = +1 fields since X is contravariant in target space.
The difference between the two cases will appear in the commutators.
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Integrating this formula gives:

X(z)= \/ aolnz-l-lﬂ Zan -,

n#O

X(z)= \/ ozolnz+1\/ Zan z7 "

The zero-modes are respectively ag and @ for X and X, and z;, and zg for X, and
Xpr. The meaning of the modes will become clearer in Section 22.1.5 where we study the
commutation relations.

First, we relate the zero-modes oy and @y to the conserved charges py, and pg (22.28) of
the U(1) current:

(22.49)

(') O_éo
bL = ) PrR = 22.50
V202 V202 ( )

X(z) = 22 —1€2lenz+1\/72 (22.51)

n#0
Then, the relations (22.28) and (22.30) allow to rewrite this result in terms of the momentum
p and winding w:

such that

1

\/Tﬁ (Olo - C_Yo). (2252)

——1 (a —}—61) w=
b \/@ 0 0)»

These relations can be inverted as

ap = \/g (p+w), o = \/?(p —w). (22.53)

In the same sense that there are two momenta p;, and pr conjugated to xy, and zg, it
makes sense to introduce two coordinates  and ¢ conjugated to p and w. From string theory,
the operator z is called the center of mass. The expression (22.53) suggests to write:

T = +q, TR=1T—q, (22.54)

and conversely:

1
=3 (zL +zR), qg=5(zL —zR). (22.55)

5 (
In terms of these new variables, the expansion of the full X(z, z) reads:

X(z, z)—x—l— (pln|z| +wln +1\/ Z anz "+ anz"). (22.56)

n;éO

In terms of the coordinates on the cylinder, the part without oscillations becomes:
X(r,o)=x—il2pr+ L wo+--- (22.57)

Note how the presence of £2 gives the correct scale to the second term. The mode ¢ does not
appear at all, and z is the zero-mode of the complete field X(z, z). As it is well-known, the
physical interpretation of x and p is as the position and momentum of the centre-of-mass
of the string.” If there is a compact dimension, then w counts the number of times the
string winds around it, and ¢ can be understood as the position of the centre-of-mass after a
T-duality.®

5In worldsheet Lorentzian signature, this becomes X (7,0) = x + £2 pt + £2 wo as expected.
6T-duality and compact bosons fall outside the scope of this review and we refer the reader to [320,
chap. 17, 237, chap. 8] for more details.
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Computation — Equation (22.50)

pL L dzJ = - 1 fdzaX:iifdzaX

~ 27 T 22mi 2 2ri

11 vt 1

The computation gives pg after replacing ag by ag.

If the scalar field is non-compact but periodic on the cylinder, the periodicity condition

X(1,0+27) ~ X(1,0) (22.58)
translates as 4 .
X (®™z,e7™3) ~ X(2,2). (22.59)
Evaluating the LHS from (22.49) gives a constraint on the zero-modes:
. . 2
X(e¥™z,e7?™2) = X(2,2) — i 5 (o — @), (22.60)
which implies
ap =Gy => pL=pr= g, w=0. (22.61)

The other cases will not be discussed in this review, but we still use the general notation to
make the contact with the literature easier. This also implies that X; and Xg cannot be
periodic independently. Hence, the zero-mode couples the holomorphic and anti-holomorphic
sectors together.

The number operators N,, N, at level n > 0 are defined by:

No=Sanom, No=<a nbn. (22.62)
n n

The modes have been normal ordered. They count the number of excitations at the level n:
the factor n~! is necessary because the modes are not canonically normalized. Then, one
can build the level operators

N=> nN,. (22.63)

They count the number of excitations at level n weighted by the level itself. This corresponds
to the total energy due to the oscillations (the higher the level, the more energy it needs to
be excited).

The Virasoro operators are

€
L= En: O Oty (22.64)
For m # 0, we have
€
m#0: L, = 3 Z Oyt + € QO (22.65)
n#0,m

there is no ordering ambiguity and the normal order can be removed. In the case of the
zero-mode, one finds

€ €
Ly = 3 ; 0 0_p: =N+ 3 ai =N +el?p3, (22.66)
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using (22.63) and (22.50). It is also useful to define Lo which corresponds to Lg stripped
from the zero-mode contribution:

Lo:= N. (22.67)
Similarly, the anti-holomorphic zero-mode is
Lo=N+e?ps,  Lo=N, (22.68)
such that
L =N+ N + ¢ (p2 +p%) =N+N+§(p2+w2), (22.69a)
Ly =N—N +el®(p3 —p%) =N — N + el wp, (22.69b)

where L(j)E := Lo + Ly as defined in (21.120). The last equality of each line follows from
(22.31b). The expression of L} for N = N = 0 matches the weights (22.45) of the vertex
operators for p;, = pr = p/2 (no winding), which will be interpreted below. It is a good
place to stress that pr, pr, p and w are operators, while &k is a number.

22.1.5 Commutators

The commutators can be computed from (21.9a) knowing the OPE (22.36). The modes of
0X and 0X satisfy

[Cm, n] = €M Ipyin 0, [@m, On) = €M Opin 0, [0tm, @] =0 (22.70)

for all m,n € Z (including the zero-modes). The appearance of the factor m in the RHS
explains the normalization of the number operator (22.62).
From the commutators of the zero-modes, we directly find the ones for the momentum
and winding:
[p, w] = [p,p] = [w,w] =0, [p, an] = [P, @n] = [w, an] = [w, @,] = 0. (22.71)
The OPE (22.35) yields
[xr,pr] = i€, [xRr,DR] = i€, (22.72)
which can be used to determine the commutators of z and q:

[z,p] = [g,w] = i, [z,w] = [¢,p] = 0. (22.73)

This shows that (z,p) and (g, w) are pairs of conjugate variables. Interestingly, the winding
number w commutes will all other modes except ¢, but the latter disappears from the
description. Hence, it can be interpreted as a number which labels different representations:
if no other principle (like periodicity) forbids w # 0, then one can except to have states with
all possible w in the spectrum, each value of w forming a different sector. There are other
interpretations from the point of view of T-duality and double field theory [132, 135, 232,
320].
The commutator of the modes with the Virasoro operators is

[Lim, @] = =1 Q- (22.74)
as expected from (21.117). For m = 0, this reduces to
[Lo,@—pn] = na_n, (22.75)

which shows that negative modes increase the energy. The commutator of the creation modes
a_, with the number operators is

[N, 0_p] = ¢—mOm n. (22.76)
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22.1.6 Hilbert space

The Hilbert space of the free scalar has the structure of a Fock space.

From (22.75), the momentum p commutes with the Hamiltonian L] such that it is a
good quantum number to label the states:” this translates the fact the action (22.1) does not
depend on the conjugate variable z. As a consequence, there exists a family of vacua |k).

The vacua |k) are the states related to the vertex operators (22.33) through the state-
operator correspondence:

|k == lim Vi(z,%) |0) = ez |0) (22.77)

where |0) is the SL(2,C) vacuum and z is the zero-mode of X (z,Z). That this identification
is correct follows by applying the operator p:

plk) =k|k). (22.78)

The notation is consistent with the one of the SL(2, C) vacuum since p |0) = 0.
The vacuum is annihilated by the action of the positive-frequency modes:

Yn>0: an k) =0, (22.79)

which is equivalent to
N, |k) =0. (22.80)

The different vacua are each ground state of a Fock space (they are all equivalent), but they
are not ground states of the Hamiltonian since they have different energies:

LY k) =2e*k* k), Ly |k)=0, (22.81)

using (22.69). The SL(2, C) vacuum is the lowest (highest) energy state if e =1 (e = —1).

The Fock space F (k) built from the vacuum at momentum & is found by acting repetitively
with the negative-frequency modes. A convenient basis, the oscillator basis, is given by the
states:

F(k) = Span { lk; {N,.}) } (22.82a)

|k { NV }) : H (o)™ N, € N* (22.82b)

n>1 VnNN'

(we don’t distinguish the notations between the number operators and their eigenvalues).
The full Hilbert space is given by:

H= / dk F(k). (22.83)

Computation — Equation (22.77)
We provide a quick argument to justify the second form of (22.77). Take the limit of
(22.56) with w = 0:

: iekX (z,z) _ s -n
zggoe |0) = Zlixﬂoexplek T 1 pln|z| +1\/ Z anz " +a,z7")| |0)

. £2 1 = ——m
=Zlim0exp 1ekw—ek\/5§)ﬁ(anz +anz )| 0).

"To simplify the discussion, we do not consider winding but only vertex operators of the form (22.33).
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The second term from the first line disappears because p|0) = 0. For ek > 0, as z,Z — 0,
the terms with «,, and @, for n < 0 disappear since they are accompanied with a
positive power of 2™ and z"™. The modes with n > 0 diverge but the minus sign makes
the exponential to vanish. A more rigorous argument requires to normal order the
exponential and then to use (22.79).

Computation — Equation (22.78)

1

1 . A
plk) = 7 5 % (dzi0X () + dzi0X (2)) Vi(0,0) |0)
11 dz ©’k  dz %k
=k V(0,0) |0)

using (22.43).

Remark 22.3 (Fock space and Verma module isomorphism) Note that, in the ab-
sence of the so-called null states, there is a one-to-one map between states in the a_,
oscillator basis and in the L_,, Virasoro basis. This translates an isomorphism between the
Fock space and the Verma module of Vi,. One hint for this relation is that applying o._,
and L_,, changes the weight (eigenvalue of Ly) by the same amount, and there are as many
operators in both basis.

22.1.7 Euclidean and BPZ conjugates

Since X is a real scalar field, it is self-adjoint (??) such that
=z pl =p, oz}: =Qa_y. (22.84)
This implies that the Virasoro operators (22.64) are Hermitian:
LI =L_,, (22.85)

as expected since T'(z) is self-adjoint for a free scalar field.
As a consequence of (22.84), the adjoint of the vacuum |k) follows from (22.77):

(k| = |k)* = (0] ek, (k| p = (k|k. (22.86)
The BPZ conjugate (21.107) of the mode a, is:
al, = —(£1)"a_p, (22.87)

where the sign depends on the choice of I* in (21.107). Using (22.52), this implies that the
momentum operator gets a minus sign:®

p'=-p, (—kl=1k). (22.88)
The inner product between two vacua |k) and |k’) is normalized as:

(k|K') = 21 6(k — ') (22.89)

8Be careful that |k) is not the state associated to the operator p through the state—operator correspondence.
Instead, they are associated to Vi, see (22.77). This explains why (k| # (|k))? as in (21.139).
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such that the conjugate state (21.158) of the vacuum reads

(k] = o (k] (22.90)

The Hermitian and BPZ conjugate states are related as:
k) = —[k)*, (22.91)

which can be interpreted as a reality condition on |k).

22.2 First-order bc ghost system

First-order systems describe two free fields called ghosts which have a first-order action
and whose conformal weights sum to 1. Commuting (resp. anti-commuting) fields are often
denoted by 8 and «y (resp. b and ¢) and correspondingly first-order systems are also called
B~ or bc systems. We will introduce a sign € = +1 to denote the Grassmann parity of the
fields and always write them as b and c. In string theory, first-order systems describe the
Faddeev—Popov ghosts associated to reparametrizations and supersymmetries (Sections 3.4
and 17.1).

22.2.1 Covariant action

A first-order system is defined by two symmetric and traceless fields b,,,...,,, and ¢t "#x-1
called ghosts. For fields of integer spins, the dynamics is governed by the first-order action

1
S=_- /de\/g_]g”" N v (22.92)

after taking into account the symmetries of the field indices. For A = 2, one recovers
the reparametrization ghost action (3.145). The action (22.92) is invariant under Weyl
transformations (the fields and covariant derivatives are inert) such that it describes a CFT
on flat space.

When the fields have half-integer spins (and often denoted as § and + in this case), they
carry a spinor index. In this case, the action contains a Dirac matrix, and the covariant
derivative a spin connection.

The ghost action (22.92) is invariant under a global U(1) symmetry

bproop, —> € by, Py @l (22.93)

22.2.2 Action on the complex plane

The simplest description of the system is on the complex plane. Due to the conditions imposed
on the fields, they have only two independent components for all n, and the equations of
motion imply that one is holomorphic, and the other anti-holomorphic:

b(z) 1= b,...,(2), b(2) := bs...5(2), c(z) == *(2), e(z) = (). (22.94)
In this language, the action becomes

S = % / d?z(bAc + b0E). (22.95)

This action gives the correct equations of motion

=0, Ob=0, 9c=0, 9dc=0. (22.96)

289



Since the fields split into holomorphic and anti-holomorphic sectors, it is convenient to study
only the holomorphic sector as usual. This system is even simpler than the scalar field
because the zero-modes don’t couple both sectors.” All formulas for the anti-holomorphic
sector are directly obtained from the holomorphic one by adding bars on quantities, except
for conserved charges which have an index L or R and are both written explicitly.

The action describes a CFT, and the weight of the fields are given by

h(d) =X, hc)=1-X, h(b)=X  h@)=1-) (22.97)

where A = n if the fields are in a tensor representation, and A = n + 1/2 if they are in a
spinor-tensor representation. The holomorphic energy—-momentum reads

T=—-X\:b0c:+ (1—\):0bc: (22.98a)
= —X:0(bc): + :0bc: (22.98b)
= (1—X):0(bc): — :bc:. (22.98c¢)

Normal ordering is taken with respect to the SL(2,C) vacuum (21.123).
Finally, both fields can be classically commuting or anticommuting (see below for the
quantum commutators):

b(z)e(w) = —ec(w)b(z), b(2)b(w) = —eb(w)b(2), c(2)c(w) = —ec(w)e(z), (22.99)

where € denotes the Grassmann parity

e {+1 anticommuting, (22.100)

—1 commuting.

Sometimes, if € = 41, one denotes b and c respectively by 5 and 7. If b and ¢ are ghosts
arising from Faddeev—Popov gauge fixing, then ¢ = 1 if X is integer; and ¢ = —1 if A is
half-integer (“wrong” spin—statistics assignment).

The U(1) global symmetry (22.93) reads infinitesimally

ob = —ib, dc = ic, 8b = —ib, éc = ic. (22.101)
It is generated by the conserved ghost current with components:
j(z) = —:b(2)e(2):, 3(2) = —:b(2)e(2): (22.102)

and the associated charge is called the ghost number

dz . dz _, _
Ngh = Ngn,r. + Ngn,r,  Nenp = j{ 29, Ngnr=-— j{ o J(Z)- (22.103)

This charge counts the number of ¢ ghosts minus the number of b ghosts, such that
Negn(c) =1,  Ng(b)=-1, Ng(@) =1,  Ng(b)=-1. (22.104)
The propagator can be derived from the path integral
é
1 —S[b,e] | —
/ dbde s [b(w)e ] 0 (22.105)

which gives the differential equation

8@ (z —w) + % (b(w)dc(z)) = 0. (22.106)
Using (B.2), the solution is easily found to be
1
(c(2)b(w)) = T (22.107)

9For the scalar field, the coupling of both sectors happened because of the periodicity condition (22.61).
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Remark 22.4 The propagator is constructed with the path integral. For convenience, the
zero-modes are removed from the measure: reintroducing them, one finds that the propagator
is computed not in the conformal vacuum (which has no operator insertion), but in a state
with ghost insertions. This explains why the propagator (22.107) is not of the form (21.184b).
Howewver, this form is sufficient to extract the OPE as changing the vacuum does not introduce
singular terms.

22.2.3 OPE
The OPEs between the b and c fields are found from the propagator (22.107):
1 €
c(2)b(w) ~ po b(z)c(w) ~ P (22.108a)
b(z)b(w) ~ 0, c(z)e(w) ~ 0. (22.108b)

The OPE of each ghost with T confirms the conformal weights in (22.97):
b(w) Ob(w)

T(2)b(w) ~ A Gow?  iw (22.109a)
T(2)e(w) ~ (1 — \) (chwzz)Q + ‘Zc_(fz (22.109b)
The OPE of T with itself is
T(2)T(w) ~ (zcj/j)4 (ET_(:§2 + ‘ZT_(lZ}) (22.110)
where the central charge is:
ex = 26(—1+ 6X — 62%) = —2¢(1 + 6A(A — 1)). (22.111)
Introducing the ghost charge:
g =€(1—2N), (22.112)
the central charge can also be written as
cx = €(1—3¢3). (22.113)

This parameter will appear many times in this section and its meaning will become clearer
as we proceed.
The OPE between the ghost current (22.102) and the b and ¢ ghosts read

J@p(w) ~ = 2 (221140)
i@etw) 22 (22.1141)

The coefficients of the (2 — w)~! terms correspond to the ghost number of the b and c fields
(22.104). More generally, the ghost number N,i(O) of any operator O(z) is defined by

. o
§(z)O(w) ~ Ngn(0) — Ewu)} (22.115)
The OPE for j with itself is
. . €
3(2)j(w) ~ Gowe (22.116)
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This will be interpreted later in the context of bosonization.
Finally, the OPE of the current with 7" reads:

() o A jw) . 9j(w)
T(z)j(w) P T o T rmw (22.117)

Due to the presence of the z~3 term, the current 5(z) is not a primary field if gy # 0, that is,
if A # 1/2. In that case, its transformation under changes of coordinates gets an anomalous
contribution:

d_w-/( )+q_Ailnd_w_dw 7 (w o Gw

i(z) = 2 dz T dz )+ 2 O,w’

This implies in particular that the currents on the plane and on the cylinder (w = In 2) are
related by:

(22.118)

i(z) = ( ) -2, (22.119)

which leads to the following relation between the ghost numbers on the plane and on the
cylinder:
1 1 ax 1 ax
Ngh = Ngcg — 4>, Ngh,L N;}}:L ?, Ngh R = N;KR E (22120)
For this reason, it is important to make clear the space with respect to which is given the

ghost number: if not explicitly stated, ghost numbers in this review are given on the plane.'®
Due to this anomaly, one finds that the ghost number is not conserved on a curved space:

NC-N”:-%XQ =(1-2)\)(g— 1), (22.121)

where Y, is the Euler characteristics (3.4), N® and N¢ are the numbers of b and ¢ operators.
In string theory, where the only ghost insertions are zero-modes, this translates into a
statement on the number of zero-modes to be inserted. Hence, this can be interpreted as a
generalization of (3.72). For a proof, see for example [34, p. 397].

Computation — Equation (22.109a)

T(2)b(w) = (— A:b(2)0c(2): + (1 — \) :0b(2) ¢(2): )b(w

~ —X1b(2)06(2): b(w) + (1 — ) :0b(2) e(2): b(w)

~ A b(z)azﬁ (1= X)9b() - !

M (o) + =)0 7= + (1= X) S0

100ther references, especially old ones, give it on the cylinder. This can be easily recognized if some ghost
numbers in the holomorphic sector are half-integers: for the reparametrization ghosts, g, is an integer such
that the shift in (22.120) is a half-integer.
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Computation — Equation (22.109b)

T(z)c(w)=(—)\:b(z)ac(z): + (1= A):9b(2)e z))c(w

~ e :0c(2)b(2): Ew) — (1 — A )c(z)ab(Tc( )

,\% —(1-=2X c(z)azm
~ A % + (1 =) (c(w) + (z — w)dc(w)) ﬁ
3 c(w) dc(w)
~O-N G G
Computation — Equation (22.114a)
J(2)b(w) = —b(2)e(2): b(w) ~ —:b(2)e(2): b(w) ~ —Zb(_zzv ~ —:(_7"”1)0

Computation — Equation (22.114b)

A2) , cw)

Zz—w z—w

J(2)e(w) = —b(2)c(2): c(w) ~ e:c(2)b(2): e(w) ~
Computation — Equation (22.116)

3(2)i(w) = :b(2)e(2): :b(w)e(w):
~ :b(2)c(2): :b(w)e(w): + b(z)c(z) b(w)e(w): + :b(2)e(2): :b(w)e(w):
€ e:c(z)b(w): b(z)c(w) €

N(z—w)2+ zZ—w z—w  (z—w)?

22.2.4 Mode expansions
The b and c ghosts are expanded as
b c
bz)= > zﬂ% c(z)= > sz—’l‘_A (22.122)
nEZ+A+v ne€Z+A+v

where v = 0,1/2 depends on € and on the periodicity of the fields, see (21.93). The modes
are extracted with the contour formulas

b, = f{ dz ner- (2), cn= dz = 2" (). (22.123)

27r1 i

Ghosts with A € Z have integer indices and v = 0 (we don’t consider ghosts with twisted
boundary conditions). On the other hand, ghosts with A € Z + 1/2 have integer indices and
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v =1/2 in the R sector, and half-integer indices and v = 0 in the NS sector (see Section 21.5).
The choices in the boundary conditions arise from the Zs symmetry of the action:

b — —b, c— —c. (22.124)

The number operators N2 and N¢ are defined to count the numbers of excitations above
the SL(2, C) vacuum of b and ¢ ghosts at level n:

Nb

= :b_,cCn:, NP =e€:c_pby:. (22.125)

The definitions follow from the commutators (22.133). Then, the level operators N® and N¢
are obtained by summing over n:

N*=>"nN:  N°=) nbN;:. (22.126)
n>0 n>0

The Virasoro operators are

L, = Z (n -(1- /\)m) byy—nCpi = Z()\m —n) bpCm—n:- (22.127)

n n

Of particular importance is the zero-mode
Lo==) nibpcn:=» nib_ncp:. (22.128)

We will give the expression of Ly in terms of the level operators below, see (22.158). To
do this, we will first need to change the normal ordering, which first requires to study the
Hilbert space.

The modes of the ghost current are

Jm ==Y bm-nCni=—)  baCmni. (22.129)

Note that the zero-mode of the current also equals the ghost number

Ngn, =jo ==Y b_ncn:. (22.130)
n

When both the holomorphic and anti-holomorphic sectors enter, it is convenient to
introduce the combinations

- 1
bt =b,+b,, &= 3 (cn £ Cn). (22.131)

The normalization of b is chosen to match the one of LE (21.120), and the one of ¢t such
that (22.134) holds. Note the following useful identities:

- 1
b, b = 2b,by, e cf = 5 Cnln- (22.132)

294



Computation — Equation (22.127)

T =—X:bdc: + (1 — X) :0bc:

n+1-—X m—+ X
= Z ()\ bCht pres g (1= X) :ben: —zm+>‘+1zm+1—>\)
m,n
:bmCn:

=3 (At 1-2) = (= Nm o+ N)) e

=3 (At 1= = (1= N(m -+ ) monnd

zm+2
m,n
Dm—nCn: L,,
=D (n—m+2m) otz > a2
m,n m

The fourth line follows from shifting m — m —n. The second equality in (22.127) follows
by shifting n — m — n.

Computation — Equation (22.129)

S S Z bmcn: . Z bm—ncn: _ Jm
J=T0C= 2 mantioa T oAl L ymtl”
m

m,n m,n

22.2.5 Commutators

The (anti)commutators between the modes b,, and ¢, read:
[bm; Cnle = Omtn,0, [bm, bn]e = 0, [m,cnle = 0. (22.133)

Therefore, the modes with n < 0 are creation operators and the modes with n > 0 are
annihilation operators:

e a b ghost excitation at level n > 0 is created by b_,, and annihilated by c,;
e a c ghost excitation at level n > 0 is created by c_,, and annihilated by b,.

In terms of b% and ¢t (22.131), we have:
b enle = Omans  [brmsCrle = Omen- (22.134)
The commutators of the number operators with the modes are:
N2 b ]l =b_nbmn, NGy Con] = C—nbmm, (22.135)
while those between the L,, and the ghost modes are:
[Lin, bn] = (M(A = 1) — 1) bpgen, [Lim, cn] = —(mA + n)emtn, (22.136)

in agreement with (21.117). If n € Z, each ghost field has zero-modes by and ¢y which
commutes with Lg
[L(), b()] = 0, [L(), C()] =0. (22137)
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The commutator of the current modes reads
[ms Jin] = M 6min,0- (22.138)
Then, the commutator with the Virasoro operators are
(L, jn] = =Njmtn + % m(m + 1)8min,0- (22.139)
Finally, the commutators of the ghost number operator with the ghosts are:

[Ngh, b(w)] = —b(w), [Ngh, c(w)] = c(w). (22.140)
Computation — Equation (22.133)

[brm, Cn)e = ej{ dw w_lf dz 27 L A2 A () e(w)

2mi 2mi

dw _ dz _ _ €
~ € ~w 1 2 1 ,wn—i—)\zm A+1
C, 2mi c,, 2mi z—w

dw

-1

:}{ 2 L™ = Omtn,0-
C, 2mi

Computation — Equation (22.140)

dz

[Ngn, b(w)] = f o J(2b(w) ~ _f% b(w) _

2mi oz —w

—b(w).

The computation for c is similar.

22.2.6 Hilbert space
The SL(2,C) vacuum |0) (21.123) is defined by:
Vn>-A: b,]0)=0, V¥n>A—1: c,[0)=0. (22.141)

If A > 1, there are positive modes which do not annihilate the vacuum.

To simplify the notation, we consider the case A € Z, the half-integer case following by
shifting the indices by 1/2. Since the modes {ci,...,cx—1} do not annihilate |0), one can
create states

[naye e macn) = - 625 [0) (22.142)

which have negative energies:

A—1
LO |’I’Ll, . ,n>\_1) = — (Z]’I’LJ> |n1, ey n>\_1) , (22143)
j=1

where (22.136) has been used. Moreover, this state is degenerate due to the existence of
zero-modes since they commute with the Hamiltonian — see (22.137). As a consequence, it
must be in a representation of the zero-mode algebra.

If the ghosts are commuting (e = —1), then it seems hard to make sense of the theory
since one can find a state of arbitrarily negative energy since n; € N. The zero-modes make
the problem even worse. The appropriate interpretation of these states will be discussed in
the context of the superstring theory for A = 3/2 (superconformal ghosts).

In the rest of this section, we focus on the Grassmann odd case € = 1.
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Energy vacuum (Grassmann odd)

Since n; = 0 or n; = 1 for anticommuting ghosts (¢ = 1), there is a state of lowest energy.
This is the energy vacuum (21.131). Since the zero-modes by and ¢y commute with Lo, it is
doubly degenerate. A convenient basis is

{1H.m} (22.144)

where
) :==ec1---ea-110), 1) :=cocr -+ ex—10). (22.145)

A general vacuum is a linear combination of the two basis vacua:
1) =w [§) +wr 1), wy,wy € C. (22.146)
The algebra of these vacua is the one of a two-state system:
bl =),  cl)=1IM, bl)=0, clt)=0. (22.147)

Hence, for the vacuum ||) (resp. |1)), bo (resp. ¢o) acts as an annihilation operator, and
conversely ¢y (resp. bg) acts as a creation operator. Finally, both states are annihilated by
all positive modes:

Vn>0: bl =ba =0,  cull) =bnll)=0. (22.148)

Note that the SL(2,C) vacuum can be recovered by acting with b_,, with n < A:

|0y =b1—x---b_1 |4y =bi_r---b_1bg|1). (22.149)
The zero-point energy (21.132) of these states is the conformal weight of the vacuum:
Lold) =axll),  Lolt) =axrl), (22.150)

where a) can be written in various forms:

A-1
_ _ )\()\ — 1) _ C) 2
aA——nEﬂn— 7 = 24—|-24. (22.151)

Taking into account the anti-holomorphic sector leads to a four-fold degeneracy. The
basis

{1 1D 1) 1 (22.152)
is built as follows:
) :==c1€1---exm16x-10),
It i=co ), WM :i=c ), 1) :=coto 1)

The modes by and by can be used to flip the arrows downward, leading to the following
algebra:

(22.153)

o) =M), all)=N1, colit)=—clt)=I[1),

_ - (22.154a)
bo [t =N, bt ==,  bo|t)=0bo[{1) =1[H),
The vacua are annihilated by different combinations of the zero-modes:
bolbd) =Bo ) =0, coltd) =Bo 1) =0, (22.151b)

bo 41) = |[I1) =0, co[t1) = ¢ |11) =0.
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In these manipulations, one has to be careful to correctly anti-commute the modes with the
ones hidden in the definitions of the vacua.

There is a second basis which is more natural when using the zero-modes c(j)E and bojE
(22.131):

{145 1=, 1) 1 (22.155)
where the two vacua |+) are combinations of the [{1) and |1J) vacua:
) = [14) = [11) (22.156)

The different vacua are naturally related by acting with cgE and b(jf which act as raising and
lowering operators:

G =2 1), ke =),
bE L) =£2|4), T =£]L).

From the previous relations, it follows that the different vacua are annihilated by the
zero-modes as follow:

by W) =b5 W) =0,  ¢5|-)=¢b|-)=0,

(22.157a)

22.157b
G =8 1) =0 af It =cp 1) =0, (22.1570)
This also means that we have
1
coeg W) =5 M), b3 [11) =2[14). (22.157c)

Computation — Equation (22.157)

2¢f |£) = (co + @) 1) = (co + &) [41) = & [1) £ co [41) = (=1 £ 1) [11)
bl |£) = (bo + bo) [14) & (bo + bo) [41) = bo [1L) £ b [41) = (L £ 1) |44)
2¢E 1) = (co £20) W) = co [W) £ [H) = 1) £ [I1) = |£)

b [11) = (bo £ bo) [11) = bo [11) £ bo [11) = 1) F 1) = F | F)

Energy normal ordering (Grassmann odd)

We now turn towards the definition of the energy normal ordering (21.166). Ultimately, it
will be found that ||) is the physical vacuum in string theory. For this reason, the energy
normal ordering - - - is associated to the vacuum ||) in order to resolve the ambiguity of the
zero-modes. In particular, by is an annihilation operator in this case, while ¢y is a creation
operator. In the rest of this section, we translate the normal ordering of expressions from
the conformal vacuum to the energy vacuum.

The Virasoro operators L,, for n # 0 have no ordering problems since the modes which
compose them commute. The expression of Ly (22.128) in the energy ordering becomes

Loy=) nibncni+ar=N+N°+ay (22.158)

where a), is the zero-point energy (22.151) and N® and N°¢ are the ghost mode numbers
(22.126). The contribution of the non-zero modes is denoted by:

Lo = N®+ N°. (22.159)
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The expression can be rewritten to encompass all modes:

L= (n— (1= X\m) ibmncn’+ar8mo (22.160)

n

Similarly, the expression of the ghost number is

* * 1
Ngn,r = jo = Z b_pent — (%A + 5) (22.161a)
=3 (Vg - NE) % (Ng - ) -2, (22.161b)
n>0
and thus: )

=Y tbmncal - (%* + 5) Sm.0- (22.162)

It is useful to define the ghost number without ghost zero-modes:
Ngnr =Y (Ng— Nb). (22.163)

n>0

One can straightforwardly compute the ghost number of the vacua:

il =0-0k = (-2 - )W, (22164a)
ity = a1 = (-5 + 3 ) 1. (22:164)

This confirms that the SL(2,C) vacuum has vanishing ghost number since ||) contains
exactly A — 1 ghosts:
Jo|0) =0. (22.165)

Using (22.120) allows to write the ghost numbers on the cylinder:

=2 A=, (22.166)

That both ghost numbers have same magnitude but opposite signs could be expected: since
the ghost number changes as Ngi, = —Ngn When b <+ ¢, the mean value of the ghost number
should be zero.

Remark 22.5 (Ghost number conventions) Since the ghost number is an additive quan-
tum number, it is always possible to shift its definition by a constant. This can be used to set
the ghost numbers of the vacua to some other values. For example, [3/, p. 116] adds qx/2 to
the ghost number in order to get Ny, = £1/2 on the plane (instead of the cylinder). We do
not follow this convention in order to keep the symmetry between the vacuum ghost numbers
on the cylinder.
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Computation — Equation (22.158)
Start with (22.128) and use (21.173):

—Zn:bnc_n::— Z nbpc_p, + € Z nc_pby

n<—X n>—X
= an_ncn+e Z nc_pby
n>\ n>—X\
0
= an_ncn—i-ech_nbn—i-e Z nc_pbnp
n>\ n>0 n=—M\+1
—an ncn—l—ech_ by, —}—ean nCn + ax
n>\ n>0
= an_ncn-i-ech_nbn—i—a)\,
n>0 n>0

= E nib_pcni+ay,
n

using that
0 A—1 A—1 A—1
Z C_nby = — chnb_n = — Z n(—€eb_pc, +1) = ez nb_pcn, + ay.
n=—A+1 n=0 n=0 n=0

The result also follows from (21.179).

Computation — Equation (22.161)

Jo=— Z b_pCpi=— Z b_ncy + € Z C—nbn,

n>A\ n>—X\
=—Zb nCn+€Z c_nbn +€Z cnb_pn + €cobg
n>\ n>0
z—Zb nCn+€Z Cc_nbn, —Zb nCn + €(A — 1) 4+ €cobg
n>\ n>0
== boncnte€) conbn+e(A—1)+ecobo.
n>0 n>0

Finally, one can write

er—1) = —% - % (22.167)

The result also follows from (21.179). The second expression is obtained by symmetrizing
the last term such that
660b0+€()\—1):—00b0+ ( b000+6) ( —1)

1 1
= E(GCObo—boco)'i‘G ()\— 5) .
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Structure of the Hilbert space (Grassmann odd)

Since the zero-modes commute with the Hamiltonian and with all other negative- and positive-
frequency modes, the Hilbert space is decomposed in several subspaces, each associated to a
zero-mode. '’

Starting with the holomorphic sector only, the Hilbert space Hgp is:

Hen = Heh,o © coHen,o, Hen,o := Hgn N ker by, (22.168)

which follows from the 2-state algebra (22.147). Obviously, one has coHgn,0 = Hgn N ker co.
The oscillator basis of the Hilbert space Hgh o is generated by applying the negative-frequency
modes and has the structure of a fermionic Fock space without zero-modes:

Hano = Span { [ {N2H (VD) }, (22.1692)
[ ANDL AN = [T o) (o)™ 1), N2 N; €N (22.169b)

(again, number operators and their eigenvalues are not distinguished). This means that
Heh,0 can also be regarded as a Fock space built on the vacuum ||), for which ¢y and by
are respectively creation and annihilation operators. Conversely, cg and by are respectively
annihilation and creation operators for coHg, 0.

In particular, this means that any state can be written as the sum of two states

=1 + Py, Py € Hgn,o, Y1 € coHgn,o, (22.170)

with 1 and 94 built respectively on top of the ||) and [1) vacua.

This pattern generalizes when considering both the holomorphic and anti-holomorphic
sectors. In that case, the Hilbert space is decomposed in four subspaces:'?
Heh = Hgh,0 ® coHgh,o0 D CoHgn,0 ® coCoHgn,o,

_ (22.171)
Hen,o := Hgn Nker by N ker by.

Basis states of the Hilbert space Hgn o are:

[ ANEE ANSEANE S ANEY) = T (0-) ™ (0-n) ™ (c—n) M7 (E-n) ¥ |11,
n>1 (22.172)
NP, NE NE N € N*.

A general state of Hgpn can be decomposed as

Y=ty + P+ + P, (22.173)

where each state is built by acting with negative-frequency modes on the corresponding
vacuum.
In terms of the second basis (22.155), the Hilbert space admits a second decomposition:

Heh = Hgh,0 @ CBLthﬁ ® cy Hgno @ 0(700+th70’

- 4 (22.174)
Hgn,0 := Hgn Nkerby Nkerbdy.

1Due to the specific structure of the inner product defined below, these subspaces are not orthonormal to
each other.
12The reader should not get confused by the same symbol Hgn,o as in the case of the holomorphic sector.
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In view of applications to string theory, it is useful to introduce two more subspaces:
Hen,+ = Hgn Nker b = Hgn o ® ¢ Hen o, (22.175)
and the associated decomposition
Hon = Hen,+ ® ¢t Hgn +- (22.176)

In off-shell closed string theory, the principal Hilbert space will be 'H;h due to the level-
matching condition. In this case, ’Hg_h has the same structure as Hgy in the pure holomorphic
sector, and car plays the same role as ¢g. A state in ’Hg_h is built on top of the vacua |{|) and
[+)-

22.2.7 Euclidean and BPZ conjugates

In order for the Virasoro operators to be Hermitian, the b,, and ¢,, must satisfy the following
conditions:

bl =eb_,, cl =c_p. (22.177)
Hence, b, is anti-Hermitian if e = —1. The BPZ conjugates of the modes are:
b = (-1 by, = (-1)""cy, (22.178)

using I+ (z) with (21.107).
In the rest of this section, we consider only the case ¢ = 1 and A € N. The adjoints of the
vacuum read:

W =(Olein-er, I =(0eia---crco. (22.179)

The BPZ conjugates of the vacua are:
=)' = (D)0l ey - eron,
(rl= |T>t = (_1)/\(1_/\) (0] coc—1 -+ c1-n-

The signs are inconvenient but will disappear when considering both the left and right vacua
together as in (22.153). We have the following relations:

(= (=)@+A=NC=0 1yt g = (1)@ [0, (22.181)

where a) is the zero-point energy (22.151).

(22.180)

Computation — Equation (22.181)
To prove the relation, we can start from the BPZ conjugate (] | and reorder the modes
to bring them in the same order as the adjoint:

<~L | — (_1)(1_,\)2+§(2—,\)(1—,\) H/)i — (_1)—a>\+(1—)\)(2—)\) |¢>i
The reordering gives a factor (—1) to the power:

A—2 1
> i= 52NN =-ax+1-x
=1

Similarly, for the second vacuum:

(1] = (F)MVZRAED ! = (-1 RV )
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We can identify the power with (22.151).

Then, we have the following relations:

Mloo=(1,  Gleo=(l, (=0, (tleo=0.  (22.182)

There is a subtlety in defining the inner product because the vacuum is degenerate. If we
write the two vacua as vectors

)= (2) , = (é) : (22.183)

then the zero-modes have the following matrix representation:

00 01
bo = (1 0) y Co = (0 0) . (22.184)

These matrices are not Hermitian as required by (22.177): since Hermiticity follows from the
choice of an inner product, it means that the vacua cannot form an orthonormal basis. An
appropriate choice for the inner products is:'?

G ={1n=0,
(P = Teold) =(0cr-n---c1coc1---ex-1]0) = 1.

The effect of changing the definition of the inner product or to consider a non-orthonormal
basis is represented by the insertion of c¢y. The last condition implies that the conjugate
state (21.158) to the SL(2, C) vacuum is:

(0°] =(0]c1—x---c_1c0c1 -1, de1=a- (22.186)

(22.185)

22.2.8 Summary

In this section we summarize the values of the parameters for different theories of interest
(Table 22.1). The (n,&) system will be introduced in Part IV in the bosonization of the
super-reparametrization (3,7) ghosts. The 1% system can be used to describe spin-1/2
fermions.

€ A ax C) a)

b, c (diff.) 1 2 -3 -26 -1

B, (susy.) | =1 3/2 2 11 3/8
as 1 1/2 0 1 0
n,€ 1 1 -1 =2 0

Table 22.1: Summary of the first-order systems. Remember that h(b) = A and h(c) =1 — A.

22.3 References

« Free scalar: general references [301, sec. 4.1.3, 4.3, 4.6.2, 69, sec. 5.3.1, 6.3, 34, sec. 4.2,
237, 158], topological current and winding [134, 320, sec. 17.2-3].

« First-order system: general references [34, chap. 5, sec. 13.1, 158, sec. 4.15, 237, sec. 2.5],
ghost vacua [183, sec. 15.3].

13To avoid confusions, let us note that the adjoint in (22.181) are defined only through the adjoint of
the modes (21.108) but not with respect to the inner product given here, which would lead to exchanging

) ~ (1] and [1)F ~ (L]
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Chapter 23

BRST quantization

The BRST quantization can be introduced either by following the standard QFT treatment
(outlined in Section 4.2), or by translating it in the CFT language. One can then use all
the CFT techniques to extract information on the spectrum, which makes this approach
more powerful. Moreover, this also provides an elegant description of states and string fields.
In this chapter, we set the stage of the BRST quantization using the CFT language and
we apply it to string theory. The main results of this chapter are a proof of the no-ghost
theorem and a characterization of the BRST cohomology (physical states).

23.1 BRST for reparametrization invariance

The BRST symmetry we are interested in results from gauge fixing the reparametrization
invariance. In this chapter, we focus on the holomorphic sector: since both sectors are
independent, most results follow directly, except those concerning the zero-modes. We
consider a generic matter CFT coupled to reparametrization ghosts:

1. matter: central charge c,,, energy—momentum tensor 7, and Hilbert space H,;

2. reparametrization ghosts: bc ghost system (Sections 3.3 and 22.2) with ¢ = +1 and
A =2, cgh = —26, energy—momentum tensor T#P and Hilbert space Hen-

The formulas for the reparametrization ghosts are summarized in Section 6.2. For modes,
the system (m, gh, b or ¢) is indicated as a superscript to not confuse it with the mode index.
The total central charge, energy—momentum tensor and Hilbert space are denoted by:

c=cm+cgh=cmn—26, T(2)=T"(2) +T(2), H=Hmn®Hen. (23.1)
The goal is to find the physical states in the cohomology, that is, which are BRST closed

QRelY) =0 (23.2)

but non exact (Section 4.2): the latter statement can be understood as an equivalence
between closed states under shift by exact states:

[¥) ~ |[¥) + Qr |A) . (23.3)
We introduce the BRST current and study its CFT properties. Then, we give a com-

putation of the BRST cohomology when the matter CFT contains at least two scalar
fields.
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23.2 BRST in the CFT formalism

The BRST current can be found from (4.50) to be [237]:

in(2) = c(z) (Tm(z) + % Tgh(z)) 4 K D2c(2) (23.4a)
= c(2)T™(2) + :b(2)c(2)0c(2): + k 8%c(2), (23.4Db)

and similarly for the anti-holomorphic sector. This can be derived from (4.53): the generator
of infinitesimal changes of coordinates (given by the Lie derivative) is the energy—momentum
tensor. The factor of 1/2 comes from the expression (22.98) of the ghost energy—momentum
tensor: the second term does not contribute while the first has a factor of 2. Since the
transformation of ¢ in (4.53) has no factor, the 1/2 is necessary to recover the correct
normalization. Finally, one finds that the transformation of b is reproduced. The different
computations can be checked using the OPEs given below. The last piece is a total derivative
and does not contribute to the charge: for this reason, it cannot be derived from (4.53), its
coefficient will be determined below. Note that it is the only total derivative of dimension 1
and of ghost number 1.
The BRST charge is then obtained by the contour integral:

Qo=Qui+Qur,  Qui=§350n(2)  Qua=§ 350 (259)

2mi

As usual, @p ~ @ g, when considering only the holomorphic sectors such that we generally
omit the index.

23.2.1 OPE
The OPE of the BRST current with T is

. Cm c(w) Oc(w) JjB(w) 9jp(w)
T'(2)jp(w) ( 5 4 65) e w)t + (3 —2k) ) + G- w)? +o =0 (236)
Hence, the BRST current is a primary operator only if
Cm = 26, K= g (23.7)

The BRST current must be primary, otherwise, the BRST symmetry is anomalous, which
means that the theory is not consistent. This provides another derivation of the critical
dimension. In this case, the OPE becomes

js(w) . 9jp(w)
(z—w)3?  z—-w’

T(2)jp(w) ~ (23.8)
Remark 23.1 (Critical dimension in 2d gravity) The value ¢, = 26 (critical dimen-
sion) was obtained in Section 3.3 by requiring that the Liouville field decouples from the
path integral. In 2d gravity, where this condition is not necessary, (nor even desirable) the
Liouville field is effectively part of the matter, such that cp + ¢, = 26. One can also study
the BRST cohomology in this case.

The OPE of jg(z) with the ghosts are

in(@)blw) ~ - 32)3 + (zjfwl)z Zﬁ”‘g (23.9a)
in(2)e(w) ~ L) (23.9b)

zZ—w
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Similarly, the OPE with any matter weight h primary field ¢ is

i(2)p(w) ~ h C((szqig”g) + ;hac(w)¢(1:)_+wc(w)a¢(w): , (23.9¢)
using that c(w)? = 0 to cancel one term.
The OPE with the ghost current is
, , 2k+1 20c(w)  jp(w)
iB(2)j(w) ~ Coof ow? zow’ (23.10)

while the OPE with itself is (for k = 3/2)

. ) em — 18 c(w)dc(w):  cm — 18 e(w)d%c(w):  em — 26 :c(w)d3c(w):
iB(2)is(w) ~ - 2 (z—w)® 4 (z—w)2 12 z—w
(23.11)
There is no first order pole if ¢,, = 26: as we will see shortly, this implies that the BRST
charge is nilpotent.

23.2.2 Mode expansions

The mode expansion of the BRST charge can be written equivalently
. m 1 gh .
Qs = zm: ‘Cm, (L_m +3 L_m>. (23.12a)
m 1
= ; cmIi + 3 71;L(n —m) :CemConbmin: (23.12b)

In the energy normal ordering, this expression becomes

1
Q=) itm (LTm +3 Lg_‘“m) - ‘32—0 (23.13a)
m
1 * *
= Z e L™, + 3 Z(n — M) i CmCnbmin+ — Co, (23.13b)
n m,n

where the ordering constant is the same as in L(g)h (as can be checked by comparing both
sides of the anticommutator). The simplest derivation of this term is to use the algebra
and to ensure that it is consistent. The only ambiguity is in the second term, when one ¢
does not commute with the b: this happens for —n + (m + n) = 0, such that the ordering
ambiguity is proportional to cg. Then, one finds that it is equal to agn = —1.

The BRST operator can be decomposed on the ghost zero-modes as

Qp = coLo — boM + Qp (23.14a)
where
~ 1 X .
Q= Z c_mLin — 2 Z (m—n)iceme—nbmins, (23.14b)
m##0 m,n7#0
m+n#0
M= Z M CmCm (23.14¢)
m7#0
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The interest of this decomposition is that Ly, M and @ do not contain by or ¢y, which
make it very useful to act on states decomposed according to the zero-modes (22.168). The
nilpotency of the BRST operator implies the relations

[Lo, M] = (@5, M] = [@5,Lo] =0, Q% = LoM. (23.15)
Moreover, one has Ngh(@g) =1 and Ngn(M) = 2.

23.2.3 Commutators

From the various OPEs, one can compute the (anti-)commutators of the BRST charge with
the other operators. For the ghosts and a weight h primary field ¢, one finds

{@B,b(2)} =T(2), (23.16a)
{@B,c(2)} = c(2)dc(2), (23.16b)
(@B, #(2)] = hdc(2)¢(2) + c(2)0¢(z). (23.16¢)

This reproduces correctly (4.53).
Two facts will be useful in string theory. First, (23.16¢) is a total derivative for h = 1:

[@B,6(2)] = 8(c(2)(2)).- (23.17)
Second, c(z)(2) is closed if h =1
{@B,c(2)8(2)} = (1 — h)c(2)0c(2)¢(2). (23.18)
The commutator with the ghost current is
[@B,3(2)] = —jB(2), (23.19)

which confirms that the BRST charge increases the ghost number by 1

[Nen, @8] = Q5. (23.20)
One finds that the BRST charge is nilpotent
{@B,QB} =0 (23.21)

and commutes with the energy-momentum tensor
[@B,T(2)] =0 (23.22)
only if the matter central charge corresponds to the critical dimension:
Cm = 26. (23.23)
The most important commutator for the modes is
L, ={Qp,bn}. (23.24)
Nilpotency of @p then implies that Qg commutes with L,,:

@B, Ln] =0. (23.25)
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23.3 BRST cohomology: two flat directions

The simplest case for studying the BRST cohomology is when the target spacetime has at least
two non-compact flat directions represented by two free scalar fields (X%, X!) (Section 22.1).
The remaining matter fields are arbitrary as long as the critical dimension ¢,, = 26 is reached.
The reason for introducing two flat directions is that the cohomology is easily worked out by
introducing light-cone (or complex) coordinates in target spacetime.

The field X° can be spacelike or timelike ¢y = +1, while we consider X! to be always
spacelike, €; = 1. The oscillators are denoted by a2, and al,, and the momenta of the Fock
vacua by kj = (k% k') such that

ki = eo(K°)® + (k). (23.26)

The rest of the matter sector, called the transverse sector L, is an arbitrary CFT with
energy—momentum tensor T, central charge c; = 24 and Hilbert space #,. The ghost
together with the two scalar fields form the longitudinal sector ||. The motivation for the
names longitudinal and transverse will become clear later: they will be identified with the
light-cone and perpendicular directions in the target spacetime (and, correspondingly, with
unphysical and physical states).

The Hilbert space of the theory is decomposed as

H=H ®HL, H ::/dkofo(k:o)@/dkl}'l(kl)®th, (23.27)

where Fo(k°) and F; (k') are the Fock spaces (22.82a) of the scalar fields X° and X1, and
Hgn is the ghost Hilbert space (22.168). As a consequence, a generic state of H reads

) = | ® 1), (23.28)

where 1, is a generic state of the transverse matter CFT H, and 4| is built by acting with
oscillators on the Fock vacuum of H:

) =50 JT (@)™ (@ )V () ¥ (com) M [, K2, )
m>0 (23.29)

|k07k17*l/> = |k0>®|k1>®|~l'>a NgmN%mEN, Nvl;uNrCnZOa]-

Since the Virasoro modes commute with the ghost number, eigenstates of the Virasoro
operators without zero-modes Lg, given by the sum of (22.67) and (22.159), can also be
taken to be eigenstates of Ngy,. It is also useful to define the Hilbert space of states lying in
the kernel of bg:

Ho =H Nkerby (23.30)
such that
H =Ho D coHo- (23.31)
The full Ly operator reads
Lo= Ly + LE" = (L — 1) + N® + N¢, (23.32)

using (22.128) for L%h. A more useful expression is obtained by separating the two sectors
and by extracting the zero-modes using (22.66):

Lo = (Lg —m} 2 —1) + L}, (23.33)
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where the longitudinal mass and total level operator are:
T b c
md,=-pt;, Ly=N°+N'4+N'+N°eN. (23.34)
A state |¢)) is said to be on-shell if it is annihilated by Lo:
on-shell: Loy |y) =0. (23.35)

The absolute BRST cohomology Haps(Qp) defines the physical states (Section 4.2) and
is given by the states ¥ € H that are () p-closed but not exact:

Hans(@) = { 1) € H| Q) = 0,30) € H | [¥) = Qz ) }- (23.36)

Since Qp commutes with Ly, (23.25), the cohomology subspace is preserved under time
evolution.

Before continuing, it is useful to outline the general strategy for studying the cohomology
of a BRST operator @ in the CFT language. The idea is to find an operator A — called
contracting homotopy operator — which, if it exists, trivializes the cohomology. Conversely,
this implies that the cohomology is to be found within states which are annihilated by A
or for which A is not defined. Then, it is possible to restrict (Q on these subspaces: this is
advantageous when the restriction of the BRST charge on these subspaces is a simpler. In
fact, we will find that the reduced operator is itself a BRST operator, for which one can
search for another contracting homotopy operator.'

Given a BRST operator @), a contracting homotopy operator A for @) is an operator such
that

{Q,A}=1. (23.37)

Interpreting @ as a derivative operator, A corresponds to the Green function or propagator.
The existence of a well-defined A with empty kernel implies that the cohomology is empty
because all closed states are exact. Indeed, consider a state |1)) € H which is an eigenstate
of A and closed @p |1) = 0. Inserting (23.37) in front of the state gives:

[¥) ={@5, A} ¥) = Qp(AlY)). (23.38)

If A is well-defined on [¢) and |¢) ¢ ker A, then A |1)) is another state in H, which implies
that |¢) is exact. Hence, the BRST cohomology has to be found inside the subspaces ker A
or on which A is not defined.

23.3.1 Conditions on the states

In this subsection, we apply explicitly the strategy just discussed to get conditions on the
states. A candidate contracting homotopy operator for Qg is

bo
A= Io (23.39)
thanks to (23.24):
Lo ={@5B,bo}. (23.40)
Indeed, suppose that |¢) is an eigenstate of Ly, and that it is closed but not on-shell:
QplY)=0,  Lolp)#0. (23.41)

LA similar strategy shows that there is no open string excitation for the open SFT in the tachyon vacuum.
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One can use (23.40) in order to write:

lv) =@z (Z—Z |¢>) : (23.42)

The operator inside the parenthesis is A defined above in (23.39). The formula (23.42) breaks
down if 4 is in the kernel of Ly since the inverse is not defined. This implies that a necessary
condition for a Lg-eigenstate 1) to be in the BRST cohomology is to be on-shell (23.35).
Considering explicitly the subset of states annihilated by by is not needed at this stage since
ker by C ker Ly for Q) p-closed states, according to (23.24). Hence, we conclude:

Haps(QB) C ker Ly. (23.43)

Note that this statement holds only at the level of vector spaces, i.e. when considering
equivalence classes of states |) ~ |1) + @ |A). This means that there exists a representative
state of each equivalence class inside ker Lo, but a generic state is not necessarily in ker L.
For example, consider a state |1)) € ker Ly and closed. Then, |¢') = |¢) + Qg |A) with
|A) ¢ ker Lg is still in Hans(Qp) but |¢) ¢ ker Lo since [Log, @g] = 0.

Computation — Equation (23.42)
For Ly |¢) # 0, one has:

) = f— ) = Li (@5, b0} [9) = Li Qs (bo [4))

where the fact that |¢) is closed has been used to cancel the second term of the
anticommutator. Note that Ly commutes with both Qg and by such that it can be
moved freely.

This shows that A = by/Lg given by (23.39) is not a contracting homotopy operator. A
proper definition involves the projector Py on the kernel of Lj:

[¥) €EkerLo: Pol) = o), [9) € (ker Lo)t : Py |y) = 0. (23.44)

Then, the appropriate contracting homotopy operator reads A(1— Py) and (23.37) is changed
to:
{@s,A(1 - Po)} = (1 - Po). (23.45)

This parallels completely the definition of the Green function in presence of zero-modes, see
(A.40). By abuse of language, we will also say that A is a contracting homotopy operator,
remembering that this statement is correct only when multiplying with (1 — Py).

We will revisit these aspects later from the SF'T perspective. In fact, we will find that Qg
is the kinetic operator of the gauge invariant theory, while A is the gauge fixed propagator in
the Siegel gauge. This is expected from experience with standard gauge theories: the inverse
of the kinetic operator (Green function) is not defined when the gauge invariance is not fixed.

The on-shell condition (23.35) is already a good starting point. In order to simplify the
analysis further, one can restrict the question of computing the cohomology on the subspace:

Ho :=H Nkerby = Hm ® Heno, (23.46)

where Hgn o = Hgn Nkerby was defined in (22.2.6). This subspace contains all states |¢)
such that:
[y e Ho == boly) =0. (23.47)
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In this subspace, there is no exact state |¢) with Lg |¢)) # 0 such that b |¢)) = @ |¢) = 0.
Indeed, assuming these conditions, (23.42) leads to a contraction:

bolY) =Qpl) =0, Lol$p)#0 = [p)=0. (23.48)

Note that the converse statement is not true: there are on-shell states such that bg 1)) # 0.
This also makes sense because the ghost Hilbert space can be decomposed with respect
to the ghost zero-modes. The cohomology of Qg in the subspace Hy is called the relative
cohomology:

Hia(@B) = Ho(QB) = { [¥) € Ho | Q) =0,B|x) € H | [¥) = QB |x) } (23.49)

The advantage of the subspace by = 0 is to precisely pick the representative of H,ps which
lies in ker Lg. In particular, the operator Lg is simple and has a direct physical interpretation
as the worldsheet Hamiltonian. This condition is also meaningful in string theory because
these states are also mass eigenstates, which have a nice spacetime interpretation, and it will
later be interpreted in SFT as fixing the Siegel gauge. Moreover, it is implied by the choice
of A in (23.39) as the contracting homotopy operator, which is particularly convenient to
work with to derive the cohomology. However, there are other possible choices, which are
interpreted as different gauge fixings.

After having built this cohomology, we can look for the full cohomology by relaxing the
condition by = 0. In view of the structure of the ghost Hilbert space (22.168), one can expect
that Haps(QB) = Hrea(@B) ® coHre(@B), which is indeed the correct answer. But, we will
see (building on Section 4.2.2) that, in fact, it is this cohomology which contains the physical
states in string theory, instead of the absolute cohomology.

As a summary, we are looking for @) g-closed non-exact states annihilated by by and Lg:

QplY) =0,  Lol$)=0,  bol¢)=0. (23.50)

23.3.2 Relative cohomology
In (23.14a), the BRST operator was decomposed as:

Qs =coLo—boM+Qp, Q% =LoM. (23.51)
This shows that, on the subspace Ly = by = 0, @ B is nilpotent and equivalent to Qp:

W) e HonkerLy = QplY)=Qrlv), Q%¥)=0. (23.52)

Hence, this implies that @ B is a proper BRST operator and the relative cohomology of Qp
is isomorphic to the cohomology of @ p:

Ho(QB) = Ho(@p)- (23.53)

Next, we introduce light-cone coordinates in the target spacetime. While it does not allow
to write Lorentz covariant expressions, it is helpful mathematically because it introduces a
grading of the Hilbert space, for which powerful theorems exist (even if we will need only
basic facts for our purpose).

Light-cone parametrization

The two scalar fields X° and X! are combined in a light-cone (if ¢ = —1) or complex (if
€0 = 1) fashion:
1 i
Xf=— (XO +— Xl) . 23.54
L \/5 L \/a L ( )
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The modes of X* are found by following (22.49):°

1 i
+ 0 1
= — + — 0 23.55
an \/i (an \/a a’n) ) n 75 R ( a’)
1 i 1 i

+ 0 1 + 0 1
7 =— |27 £ —=x R = — + — s 23.55b
Loyve ( L Veo L) Pr V2 <pL \/5101:> ( )

The non-zero commutation relations are:

[t 0] = €0 M Emtn 0, [z, pF] = ieo. (23.56)

This implies that negative-frequency (creation) modes a* are canonically conjugate to

positive-frequency (annihilation) modes ;. Note the similarity with the first-order system

(22.133).
For later purposes, it is useful to note the following relations:
2pip; = (02)” +eo(p1)? = eopf 1, (23.57a)
zTp” + 27 pt = 200 + ¢ z'p?, (23.57b)
_ 1
Z ata, = 3 Z (apob, ., + e g, ). (23.57¢)
n n

In view of the commutators (23.56), the appropriate definitions of the light-cone number
N7 and level operators N* are:

NE = %0 ot of, Nt=YnNE (23.58)
n>0

The insertion of €y follows (22.62). Then, one finds the following relation:

Nt + N~ =N°4+ N (23.59)
Using these definitions, the variables appearing in Ly (23.33)
Lo = (L§ —mi 2 —1) + L} (23.60)
can be rewritten as:
m} = —20pip;,  Ly=N*+NT+N°+N° (23.61)

The expression for the sum of the Virasoro operators (22.64) easily follows from (23.57):

LY+ L =¢ Z atar i=e Z afan, i+ e (ag o + atan). (23.62)
n n#0,m

Computation — Equation (23.56)
For the modes o, we have:

1 i i
[ogh, 0] = 3 |:(a2n + ﬁ%ﬂ) , (0491 * ﬁa’l‘)]
1 €
— 5 (oo % Lok o)) = G mbnino1 5 )

where we used (22.71). The other commutators follow similarly from (22.72), for

2For ¢y = 1, this convention matches the ones from [40] for X° = X and X! = ¢. For ¢ = —1, this
convention matches [237].
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example:

(- 75et) (e )

(2P} & eola, pE]) = 5 (1 £ 1).

1
[-TL,PL] = 5
_1
2

Computation — Equation (23.57)
For the modes o, we have:

1 0 i 1 0 i 1
Zan am n 5 Z (an + _60 an) (am—n ﬁ C—n

i
_ 1.1 0 1 0.1
-5 E : (Ol am n T €00, + (am—nan 0Oy ) .

Jé

The last two terms in parenthesis cancel as can be seen by shifting the sum n - m —n
in one of the term. Note that, for m # 2n, there is no cross-term only after summing
over n.

The relations for the zero-modes follow simply by observing that expressions in both
coordinates can be rewritten in terms of the 2-dimensional (spacetime) flat metric.

Computation — Equation (23.59)
Using (23.57), one finds:

N°+N'=)"n(NS+Ny)=> n(Nf+N;)=Nt+N".

Reduced cohomology

In terms of the light-cone variables, the reduced BRST operator @ B reads:

@B = Z Com <L + € Z ata, n) + % Z(n —m) :CmCenbmin:. (23.63)

m#0 m,n

This operator can be further decomposed. Introducing the degree

deg:= Nt — N~ + N°— N? (23.64)

such that

Vm #0: deg(a;h) = deg(cm) =1, deg(c;,,) = deg(by,) = —1, (23.65)

and deg = 0 for the other variables, the operator @ B is decomposed as:*

Qp=Qo+Q:1+Qs  deg(Q;) =J, (23.66a)

where

1 *
Zc_ Ll+ Z Cm (eoa o, n+§(m—n)c_mbm+n)*,

m#0 m,n#0

m4n£0 (23.66b)
Qo = ZOLSL CnQy, Q2= Z ag cnayt.
n#0 n#0

3The general idea behind this decomposition is the notion of filtration, nicely explained in [7, sec. 3, 49].
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The nilpotency of @ p implies the following conditions on the Q;:

Q% = Q% = 0) {Q07Q1} = {QlaQ2} = 07 Q% + {QO7Q2} =0. (2367)

Hence, Qo and Q2 are both nilpotent and define a cohomology.
One can show that the cohomologies of Qg and Qg are isomorphic*

Ho(Qp) ~ Ho(Qo) (23.68)
under general conditions [40], in particular, if the cohomology is ghost-free (i.e. all states
have Ng, = 1).

The contracting homotopy operator for Qg is
-~ B 1
A= T Bi=e ) — o, by (23.69)
0 n#0 0

Indeed, it is straightforward to check that
' ={Qy,B} = {Qun,A}=1 (23.70)

As a consequence, a necessary condition for a closed fg-eigenstate |} to be in the
cohomology of Qg is to be annihilated by fg:

Lijy) =0, = N*¥[y)=Ne|p)=N|p) =0, (23.71)

since Eg is a sum of positive integers. This means that the state i) contains no ghost or
light-cone excitations afn, b_, and c_,, and lies in the ground state of the Fock space H|¢.

Then, we need to prove that this condition is sufficient: states with Eg = 0 are closed.
First, note that a state |¢) € Ho with Zg has ghost number 1 since there are no ghost
excitations on top of the vacuum ||), which has Ng, = 1. Second, Eo and @y commute, such
that:

0= QoL} [v) = LiQo I - (23.72)

Since @) increases the ghost number by 1, one can invert fg = N®+ N¢+ ... in the last
term since fg # 0 in this subspace. This gives:

Qo [4) = 0. (23.73)

Hence, the condition fg |¢)) = 0 is sufficient for |1} to be in the cohomology. This has to be

contrasted with Section 23.3.1 where the condition Lg = 0 is necessary but not sufficient.
In this case, the on-shell condition (23.33) reduces to

Lo= Ly —mj > —1=0. (23.74)

But, additional states can be found in ker B or in a subspace of H on which B is singular.
We have ker B = ker E(I)I such that nothing new can be found there. However, the operator B
is not defined for states with vanishing momentum ozg" x pJLr = (. In fact, one must also have
ag « p; = 0 (otherwise, the contracting operator for Q3 is well-defined and can be used
instead). But, these states do not satisfy the on-shell condition (except for massless states
with L = 1), as it will be clear later (see [299, sec. 2.2] for more details). For this reason,
we assume that states have a generic non-zero momentum and that there is no pathology.

4iThe role of Qo and Q2 can be reversed by changing the sign in the definition of the degree and the role
of P,
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Full relative cohomology

This section aims to construct states in Ho(Qp) from states in H(Qo). We follow the
construction from [40].
Given a state |1o) € Ho(Qo), the state Q1 |tho) is Qo-closed since Qo and @1 anticommute
(23.67):
{Qo, @1} v0) =0 = Qo(Q1lv0)) =0. (23.75)

Since Q1 |tbo) is not in ker E(I)I (because @ increases the ghost number by 1), the state Q1 [¢o)
is Qo-exact and can be written as Qo of another state |11 ):

Q1) =1 —Qo Y1) = |1) = —% Q1 |vo) - (23.76)
0

Computation — Equation (23.76) R
Start from the definition and insert (23.70) since Ly is invertible:

Q1 |o) = {Qo, AEH} Q1 |vo) = Qo (% Q1 |1/)0>) .
Ly Ly

The state |¢1) is identified with minus the state inside the parenthesis (up to a BRST
exact state).

As for |¢o), apply {Qo, Q1} on ¥1:
{Qo, @1} [¥1) = Qo(Q1 ¥1) + Q2 [vho) ). (23.77)

This implies that the combination in parenthesis is Qg-closed and, for the same reason as
above, it is exact:

Q1 [¥1) + Q2 [Yo) = Qo [¢2) , 1) = —%(Ql 1) + Q2 |1ho) ). (23.78)
0
Computation — Equation (23.77)

{Qo, @1} 1) = Qo@1 [¥1) — QF [¥ho) = QoQ1 |¢1) + {Qo, Q2} |tho) -

The first equality follows from (23.76), the second by using (23.67). The final result is
obtained after using that |1y} is Qo-closed.

Iterating this procedure leads to a series of states:

B
[Yr1) = —ﬁ(Ql le) + Q2 [Yk—1) )- (23.79)
0
We claim that a state in the relative cohomology |1) € ’Ho(@ B) is built by summing all these
states:
) =D lve) - (23.80)
kEN
Indeed, it is easy to check that |¢) is @ B-closed:
Qs ly) =0. (23.81)
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We leave aside the proof that 1 is not exact (see [40]). Note that ¢ and 1y have the same
ghost numbers
Negn(¢) = Ngn(tho) =1 (23.82)
since Ngh(BQ;) = 0.
In fact, since 1o does not contain longitudinal modes, it is annihilated by Q1 and Q2 (these
operators contain either a ghost creation operator together with a light-cone annihilation
operator, or the reverse):

Q1 |to) = Q2 |o) = 0. (23.83)

As a consequence, one has ¥ = 0 for £ > 1 and ¥ = 1.

Computation — Equation (23.81)

Qs )= Qnlvs)

keN
= Qo |*o) +GQ1 [v0) + Qo |1/)12+ Q2 [v0) + Q1 [¥1) + Qo |1/122+ e
=0 =0
=0.

23.3.3 Absolute cohomology, states and no-ghost theorem

The absolute cohomology is constructed from the relative cohomology:

Habs(QB) = Hrel(QB) @ co Hrel(QB)- (2384)

The interested reader is refereed to [40] for the proof. A simple motivation is that the Hilbert
space is decomposed in terms of the ghost zero-modes as in (22.168). Since the zero-modes
commute with @o, linear combination of states in H,e1(Qp) and coH e (@) are expected to
be in the cohomology. Obviously, one has to work out the other terms of @ and prove that
there are no other states.

It looks like there is a doubling of the physical states, one built on ||) and one on |1).
The remedy is to impose the condition by = 0 on the states (see also Section 4.2.2 and [299,
sec. 2.2] for more details). As already pointed out, states in Haps form equivalence class
under |¢) ~ |[¢) + @p |A), and it is necessary to select a single representative. This is what
the condition by = 0 achieves. Obviously, it is always possible to add BRST exact states to
write another representative (for example, to restore the Lorentz covariance).

The last step is to discuss the no-ghost theorem: the latter states that there is no negative-
norm states in the BRST cohomology of string theory. This follows straightforwardly from
the condition Ly = 0: it implies that there are no ghost and no light-cone excitations. The
ghosts and the time direction (if X© is timelike) are responsible for negative-norm states.
Hence, the cohomology has no negative-norm states if the transverse CFT is unitary (which
implies that all states in H have a positive-definite inner-product).

Physical states |¢) € H.e1(@p) are thus of the form:

) = 1K, k', 1) ® 1), 1) € Ha, (23.85a)
(Ly —mf 2 =1) ) =0,  p}  =-mi ¢° (23.85Db)

This form can be made covariant: taking a state of the form [¢) ® ||) with |¢) € H,y, acting
with @ p implies the equivalence with the old covariant quantization:

(LgF = 1) |y =0, Vn>0: L) =0. (23.86)
This means that ¥ must be a weight 1 primary field of the matter CFT.
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Remark 23.2 (Open string) The results of this section provide, in fact, the cohomology
for the open string after taking pr, = p (instead of pr, = p/2 for the closed string).

23.3.4 Cohomology for holomorphic and anti-holomorphic sectors

It remains to generalize the computation of the cohomology when considering both the
holomorphic and anti-holomorphic sectors.
In this case, the BRST operator is

Qp = coLo —boM + Qp + & Lo — boM + Qp. (23.87)

It is useful to rewrite this expression in terms of Loi, bgt and ca—L:

Qp =cf L —bfM* +c; Ly —by M~ +QF, (23.88)
where 29
+ 1+ mHZ Tl+ - 1— 7=
Lf=|\Lit———-2|+Ly", Lg=Ly~ +L (23.89)
and 1
M* = S (M + M). (23.90)

Because of the relations LOjE ={@s, bgt}, we find that states in the cohomology must be
on-shell Lar = 0 and must satisfy the level-matching condition L, = 0:°

Lg [4) = Ly [$) = 0. (23.91)

Again, it is possible to reduce the cohomology by imposing conditions on the zero-modes
such that the above conditions are automatically satisfied (see also Section 4.2.2). Imposing
first the condition b, = 0 defines the semi-relative cohomology. The relative cohomology is
found by imposing bojE = 0 and in fact corresponds to the physical space (see [299, sec. 2.3]
for more details). The rest of the derivation follows straightforwardly because the two sectors
commute: we find that the cohomology is ghost-free and has no light-cone excitations:

IIE—NO £ N4 N + N+ NP £ NP+ Ne £ N =0. (23.92)

In general, it is simpler to work with a covariant expression and to impose the necessary
conditions. Taking a state |¢) ® [} with |¢) € H.,,, we find that 1 is a weight (1,1) primary
field of the matter CFT:

Ly + Ly —2) ) =0,  (Lg'— L) %) =0,

_ (23.93)

Yn>0: L*|Y)=Lyv)=0.

An important point is that the usual mass-shell condition k2 = —m? is provided by the first

condition only. This also shows that states in the cohomology naturally appears with cc
insertion since

[H4) = ¢(0)e(0) [0) = 161 10) - (23.94)

This hints at rewriting of scattering amplitudes in terms of unintegrated states (4.29) only.

A state is said to be of level (¢,£) and denoted as 1, ; if it satisfies:

Lolwes) = thns),  Lolbes) = Zlbys) - (23.95)

5In the current case, the propagator is less easily identified. We will come back on its definition later.
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Example 23.1 — Closed string tachyon

As an example, let’s construct the state 10 with level zero for a spacetime with D
non-compact dimensions. In this case, the transverse CFT contains D — 2 free scalars
which combine with X° and X! into D scalars X*. The Fock space is built on the
vacuum |k) and we define the mass such that on-shell condition reduces to the standard
QFT expression:

K =-m?,  m?:= 222 (N+ N -2), (23.96)
where N and N are the matter level operators. The state in the remaining transverse
CFT (without the D — 2 scalars) is the SL(2, C) vacuum with Ly = Lg = 0 (this is the
state with the lowest energy for a unitary CFT). In this case, the on-shell condition
reads

m?? = -4 <0. (23.97)

Since the mass is negative, this state is a tachyon. The vertex operator associated to
the state reads: . )
Y (k, 2,2) = c(2)é(2)e* X (#2), (23.98)

This also illustrates that the closed string states are product of open string states, up to
the exponential term.

23.4 Summary

In this chapter, we have described the BRST quantization from the CFT point of view. We
have first considered only the holomorphic sector (equivalently, the open string). We proved
that the cohomology does not contain negative-norm states and we provided an explicit way
to construct the states. Finally, we glued together both sectors and characterized the BRST
cohomology of the closed string.

What is the next step? We could move to computations of on-shell string amplitudes, but
this falls outside the scope of this review. We can also start to consider string field theory.
Indeed, the BRST equation Qg |%) = 0 and the equivalence |1)) ~ |¢) + Q@ |A) completely
characterize the states. In QFT, states are solutions of the linearized equations of motion:
hence, the BRST equation can provide a starting point for building the action. This is the
topic of Chapter 13.

23.5 References

o The general method to construct the absolute cohomology follows [40, 237]. Other
works and reviews include [28, 39, 74, 145, 146, 208, 216].

o String states are discussed in [34, sec. 3.3, 237, sec. 4.1].
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Appendix A

Conventions

Most of the review uses natural units where ¢ = h = 1, but the string length £ (or Regge slope
o) are kept. A bar is used to denote both complex conjugation and the anti-holomorphic
operators. The symbol := (resp. =:) means that the LHS (RHS) is defined by the expression
in the RHS (LHS).

A.1 Coordinates

The number of spacetime (target-space) dimensions is denoted by D = d + 1, where d is
the number of spatial dimensions. The corresponding spacetime and spatial coordinates are
written with Greek and Latin indices:

zt = (2, %), p=0,....D-1=d i=1,...,d (A.1)

When time is singled out, one writes z° = ¢ in Lorentzian signature and z° = ¢tz in Euclidean
signature (or z° = 7 when there is no ambiguity with the worldsheet time).
A p-brane is a (p + 1)-dimensional object whose worldvolume is parametrized by coordi-
nates:
0% = (6% %), a=0,...,p—1, a=1,...,p. (A.2)

The time coordinate can also be singled out as ¢°

= 7)s in Lorentzian signature and as
0% = 7 in Euclidean signature. For the string, the index « is omitted since it takes only one
value.

The Lorentzian signature is taken to be mostly plus and the flat Minkowski metric reads

N = diag(—1,1,...,1). (A.3)
d
The flat Euclidean metric is
0uv = diag(l,...,1). (A.4)
D

Similar notations hold for the worldvolume metrics 7,5 and d4,. The Levi-Civita (completely
antisymmetric) tensor is normalized by

€1 = —€l =1. (A.5)

Wick rotation from Lorentzian time ¢ to Euclidean time 7 (either worldsheet or target
spacetime) is defined by
t = —ir. (A.6)



Accordingly, contravariant (covariant) vector transforms with the same (opposite) factor:
Vi =—iVR, Vi =1iVgy. (A7)

Most computations are performed with both spacetime and worldsheet Euclidean signatures.
Expressions are Wick rotated when needed.
Light-cone coordinates are defined by

ot =% £ 21 (A.8)

A function depending only on zt (z7) is said to be left-moving (right-moving) by analogy
with the displacement of a wave. Under analytic continuation, the left-moving (right-moving)
coordinate is mapped to the holomorphic' (anti-holomorphic) coordinate z (z). In chiral
theories, the left-moving value is written first.

The worldsheet coordinates (7, 0) on the cylinder are defined by

T €R, o€l0,L), o~0o+1L, (A.9)

where typically L = 2m. The integration over the spatial coordinate is normalized such that
the perimeter of spatial slice is normalized to 1 if L = 27:

1 [F L
L= do = —. A.10
2n /0 7% o ( )
This implies that 2d action, conserved charges, etc. are divided by an extra factor of 2.
The coordinates can be written in terms of complex coordinates

w =17 +io, w=rT—1io (A.11)
such that the flat metric is
ds® = d7? + do? = dwdw. (A.12)

Under Wick rotation, the complex coordinates are mapped to light-cone coordinates as
follows:

w=io", w=io". (A.13)

The cylinder can be mapped to the complex plane through

_ e27r'w/L, 7 = 2™0/L (A14)

z
The definition of the Levi-Civita tensor includes the /g factor, such that

€2z = % €% = —2i (A.15)

on the complex plane with flat metric.
Conventions in the literature are compared in Table A.1.

IThe terms of holomorphic is simply used to indicate that the object depends only on z, but not on Z.
Typically, the objects have singularities and are really meromorphic in z.
2In fact, the terms of “left”- and “right”-moving are interchanged in [237, p. 34] to get agreement with
the literature. But, it means that the spatial axis orientation is reversed.
Moreover, concerning [69], the first definition agrees with (6.1) but not with (6.53) since the definition of &
(our w) is modified in-between. This explains why the definitions of left- and right-moving [69, p. 161] do not
agree with the one given in the table.
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refs

here, Di Francesco et al.

[35, 69, 151, 155, 158, 260, 307, 320]
Blumenhagen et al.

[19, 34, 150, 250]

Polchinski [215, 237, 301] w=0+ir z=e ™ w=-0",w=o0" anti-holomorphic?

w PR

w=r7T—lio z=¢e€

Table A.1: Conventions for the coordinates.The notations are the following (they can slightly
vary depending on the references): the Euclidean time is obtained by the analytic continuation
7 = it (denoted also by 7 = ¢° = ¢2) the spatial direction is ¢ = o', and the light-cone
coordinates are o* =t +o.

A.2 Operators

For this section, we follow mainly [2]. Consider a Hilbert space H with inner-product (-,-).
Given states A, B,C € ‘H and X € C, the inner-product must be conjugate symmetric and
linear:

(A,B) = (B, A)", (A,B+XC)=(A,B)+ X ({A,C). (A.16)
A unitary operator U satisfies:
(UA,UB) = (A, B),
L T
UUt=U'U =1,
Using the bra-ket notation, we can also write:
(AlUB) = (A|U|B) (A.18)
and define the action of U on (A| and |A) as:
UA) :=U|4), (UA|:=(A|U". (A.19)

From these relations, we can determine how the matrix element of an operator O transforms:
(AlO|B) = (A'|0'|B'), (A.20)

where

A =UA, B =UB, 0 =UoUt, (A.21)

which follows from

(A|O|B) = (A|OB) = (UA|[UOB)
= (UA[UOUTUB) = (UA[UOU'|UB).

An anti-unitary operator U satisfies:

(4,B)=(UA,UB)",
A, UB)= (U'A,B)" = (B,UTA _
) < U ) < ’ )_ < ) ) ) (U anti—unitary). (A-22)
U(A+AB) =UA+ \*UB,
vut=U0tr =1,
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Note that U? is unitary. The matrix element of an operator @ transforms as:
(A|O|B) = (B'|0'1|4"y, 0"t .= UOUT, (A.23)
where the notations are the same as in (A.21). This follows from:

(A|O|B) = (OTA|B) = (UB|UO" A)
= (UB|UO'UT UA) = (UB|UOTUT|UA).

Commutators and anti-commutators are denoted by
[A,B]:=[A,B]- = AB — BA, {A,B}:=[A,B]+ = AB + BA. (A.24)

The Grassmann parity of a field A is denoted by |A|

4] = +1 Grassmann-odd, (A.25)
0  Grassmann-even.
Two (anti-)commuting operators satisfy
AB = (-1)4lIBI B4, (A.26)
Reversing a string of operators Ay, ..., A, leads to
F(F—1)
Al,...,An = (—1) 2 An,...,Al, (A27)
where F' is the fermion operator, and the exponent counts the number of permutations of
F(F—1
Grassmann-odd operators. If there is an even number of them, we get (—1) G _F,
A.3 QFT
Energy is defined as the first component of the momentum vector
p* = (B, p). (A.28)

The following notations are used to denote the number of supersymmetries:
(N,Ngr), N =Nr+ Ng, (A.29)

where Np, and Ny are the numbers of left- and right-chirality supersymmetries. The last
form is used knowing the chirality of the supercharges is not relevant.

The term “zero-mode” has two (related) meanings:

1. given an operator D acting on a space of fields 9(z), zero-modes 1y ;(z) of the operator
are all fields with zero eigenvalue Dy ;(2) =0,¢=1,...,dimker D

2. the zero-mode of a field expansion ¢ =) Pz~ """ is the mode 1o for n = 0: on the
cylinder, it corresponds to the constant term of the Fourier expansion on the cylinder
(hence, a zero-mode of 9, according to the previous definition)

A prime indicates that the zero-modes are excluded. For example, det’ D is the product of
non-zero eigenvalues, ¢’ is a field without zero-mode and d’¢ the corresponding integration
measure.
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A.3.1 Symmetries
The variation of a field ¢(z) is defined by

5¢(z) = ¢'(z) — ¢(=). (A.30)

Given an internal symmetry with parameters a*, the Noether current in Lorentzian signature
is given by:
oL ¢
JE =\ %9
0(0u9) da°
where £ is the Lagrangian which does not include the factor /g for curved spaces and A is

some normalization.® The conserved charges @, associated to the currents J for a fixed
spatial slice t = cst are

VuJi =0, (A.31)

Q. = % }{E dP~tzvh J2, (A.32)

where ¥ is a spatial slice and h is the induced metric. One sets A = 27 in two dimensions,
otherwise A = 1. The variation of a field under a transformation generated by @ is

5a“¢(x) = iaa[Qay ¢($)] (A33)
In Euclidean signature, the current and variation are:
oL ¢
- 99
JE =i\ 8(0,0) da’ (A.34a)
basp(z) = —a[Qq, $(z)]. (A.34b)

Note that the charge is still given by (A.32). The factor of i in (A.34a) can be understood
as follows.* First, the time component JO of the current transforms like time such that
JO — iJ?, which implies that the charge also gets a factor i, Q, — iQ,. This explains the
minus sign in (A.34b). Then, one needs to make this consistent with the formula (A.45) for
the charge associated to a general surface. Given a spacelike n,, the integration measure
includes the time which transforms with a factor of i: one can interpret it as coming from the
spatial components of the current, J¢ — iJZ, while working with a Euclidean region. Another
way to understand this factor for the spatial vector is by considering the electromagnetic
case, where J contains a time derivative.

A.4 Curved space and gravity

The covariant derivative is defined by
V,y=0,+T, (A.35)
where I', is the connection. For example, one has for a vector field
V,AY =0,AY + T, AP (A.36)
The negative-definite Laplacian (or Laplace-Beltrami operator) is defined by
1

A =g,V = = Vu(Vag V) (A.37)

3Including the /g would give the current density /gJ%. The simple derivative of the latter vanishes
au({ng) = 0 in view of the identity (A.38).
We stress that these formulas and arguments do not apply to the energy—-momentum tensor.
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Note that V,, does not contain the Christoffel symbol for the index v because of the identity
(A.38) (but it contains a connection for any other index of the field). For a scalar field, both
derivatives become simple derivatives. The covariant divergence of a vector can be rewritten
in terms of a simple derivative:

1
— 9, (v/gv"). (A.38)
\/.6 2 \/_

The energy—momentum tensor is defined by

-
Vot =

2\ 6S
T, =——"-—", A.39
2 \/g ég”y ( )
where A = 27 for D = 2 and A = 1 otherwise.
The Green function G of a differential operator D is defined by
5(z —y)
D,G(z,y) = ——= — P(x,y), A.40
(z,y) 7 (z,9) (A.40)
where P is the projector on the zero-modes of D.
Under an infinitesimal change of coordinates
oxt =&, (A.41)
the metric transforms as
0guv = Leguw = V& + Vi, (A.42)
Stokes’ theorem reads
/ dPz Vv o = f dz,v*, d¥, :=en, dP7'%, (A.43)
1% av

where V is a spacetime region, S = 9V its boundary and d°~!X the induced integration
measure. The vector n,, normal to S points outward and € := n,n* =1 (—1) if S is timelike
(spacelike). If the surface is defined by z° = cst, then

' =/gd" 'z, n,=4. (A.44)

We can write a generalization of (A.32) for a charge associated to a general surface S:

Qs =1 /S ds, I, (A.45)

If the current J5' is conserved, V,Ji = 0 (no source), Stokes’ theorem (A.43) shows that
the charge vanishes Qg = 0 if S is a closed surface and that it is conserved Qgs, = —Qs, for
two spacelike surfaces S; and S> extending to infinity (if J4 vanishes at infinity) (see [233,
chap. 3, 320, sec. 8.4] for more details).

A.4.1 Two dimensions

Stokes’ theorem (A.43) on flat space reads

/d2.1: O v* = ]{ew dz¥v# = j{(voda —vtdr), (A.46)

since dX,, = €y, dz”.
The integral of the curvature is a topological invariant

1 9 1
Xg;b —E/d UﬂR-{-g%dsk
=2—-2g—0b,

called the Euler characteristics and where g is the number of holes and b the number of
boundaries.

(A.47)
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A.5 List of symbols

General:
e D: number of non-compact spacetime dimensions
e g: loop order for a scattering amplitude
o n: number of external closed string states
e x*: spacetime non-compact coordinates
e 0% = (t,0): worldsheet coordinates
e g,: closed string coupling
o Zy= A, genus-g vacuum amplitude

o Agn(kiy . kn)ay,.an = Agn({ki}){a;}: g-loop n-point scattering amplitude for
states with quantum numbers {k;, a;} (if connected, amputated Green functions for
n > 3)

o Ggn(ki,...,kn)as,....an: g-loop n-point Green function for states with quantum num-
bers {kz, ai}

. T;l;: traceless symmetric tensor or traceless component of the tensor T,
o WU: generic (set of) matter field(s)
Hilbert spaces:
o H: generic Hilbert space (in general, Hilbert space of the matter plus ghost CFT)
o Hi=HNkerbF
o Ho=HNkerb;, Nkerby
e H(Qp): absolute cohomology of the operator @p inside the space H

e H_(Qp) = H(Qp) N H: semi-relative cohomology of the operator @p inside the
space H

e Ho(QB) = H(Qp) NHO: relative cohomology of the operator Qp inside the space H
e A: Grassmann parity of the operator or state A
Riemann surfaces:
e g: Riemann surface genus (number of holes / handles)
e n: number of bulk punctures / marked points
e ¥, n: genus-g Riemann surface with n punctures
o Xy =340: genus-g Riemann surface
e M, ,: moduli space of genus-g Riemann surfaces with n punctures
e My = Mg o: moduli space of genus-g Riemann surfaces

e My, =dimM,,
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Mg ,, = dimc My,

M, = M, o = dim M, = dimker P}

Mg = Mg , = dimc M,

Kg,n: conformal Killing vector group of genus-g Riemann surfaces with n punctures
Ky = Kg4,0 = ker P;: conformal Killing vector group of genus-g Riemann surfaces
Kgn =dim g,

Kgm = dim¢ Ky, = dimc ker P,

Kg = Kg,0 = dimker P;

Kg K;,o = dim¢ ker P;

);: real basis of ker P;, CKV

¢;: real basis of ker PlJr , real quadratic differentials

(Yx, ¥k ): complex basis of ker Py, (anti-)holomorphic CKV

(é1,¢1): complex basis of ker PlT , (anti-)holomorphic quadratic differentials
tn € My : real moduli of Mg,

mp € My, complex moduli of M, ,,

t; € Mg: real moduli of M,

my € Mg: complex moduli of M,

z: coordinate on the Riemann surface

w;: local coordinates around punctures

Zq: local coordinates away from punctures

fi(w;): transition functions from w; to z

04 coordinate system on the left of the contour C,

To: coordinate system on the right of the contour C,

Vo(k;0%) := Vi o(0?): matter vertex operator with® momentum k and quantum
numbers « inserted at position o = (z, z)

Yo (k; 0%): unintegrated vertex operator with momentum k and quantum numbers «
inserted at position o

Va(k) = [ d?0/g Va(k;0): integrated vertex operator

on-shell (closed bosonic string): 7, (k;0%) = ccVu(k;0*) is a (0,0)-primary, with
Vo(k;0%) a (1,1)-primary matter operator

5When the momentum and/or quantum numbers are not relevant, we remove them or simply index the
operators by a number.
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. O operator O with zero-modes removed

e Of: Hermitian adjoint

e O%: Euclidean adjoint

o O!: BPZ conjugation

e (01|02): BPZ inner-product

. <0f|(92): Hermitian inner-product

e |0): SL(2,C) (conformal) vacuum

o |Q): energy vacuum (lowest energy state)

e :0: : conformal normal ordering (with respect to SL(2,C) vacuum |0))
e 1O: : energy normal ordering (with respect to energy vacuum [{2))

o O(00,00) : operator inserted at oo, (?77?)

e WU: closed string field
e ®&: open string field
o {¢r} ={0a(k)}: basis of H (or some subspace)

Indices:
e 4 =0,...,D —1: non-compact spacetime dimensions
e a=0,...,p: worldvolume coordinates (p = 1: worldsheet)
e i=1,...,n: external states, local coordinates

e A=1,...,My,: real moduli of M,

e A=1,...,M{ .: complex moduli of M,

e i=1,...,My: real moduli of M,

e I'=1,...,Mg: complex moduli of M,

e i=1,...,K,: real CKV of K,

e K=1,...,K{: complex CKV of K,

o 7= (k,a): index for basis state of H (or some subspaces), a: non-momentum indices
Superstring:

« Mgmn

e Mgmn

e A=1,...,npc: number of PCO
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Appendix B

Summary of important formulas

This appendix summarizes formulas which appear in the review or which are needed but
assumed to be known to the reader (such as formulas from QFT and general relativity).

B.1 Complex analysis

The Cauchy—Riemann formula is

dw  f(w) _ f7V(z)
}{C (B.1)

2 (w—z)* (n—1)

where f(z) is an holomorphic function.
One has

5% — 2050)(2). (B.2)

B.2 Conformal field theory

In two dimensions, the energy—momentum tensor is defined by

47 6S

Tp = —— —.
ab \/§ 5gab

B.2.1 Complex plane

Defining the real coordinates (z,y) from the complex coordinate on the complex plane

z =z +iy, z =z — iy, (B.4)
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we have the formulas:

1
ds® = dz? + dy® = dzdz, 922 = 5 9zz = 9zz = 0, (B.5a)
€2z = % % = —9i, (B.5b)
1 = 1
0:=0,= 2 0z —0y), 0:=0; = 3 (0 +10y), (B.5c¢)
VZ=V?*+iV¥, VE=V?®—iV¥, (B.5d)
d?z = dzdy = % d?z, d?z = dzdz, (B.5e)
1
0(2) = 55(2)(:10), 1= /sz 8@ (z) = /dzx @ (), (B.5f)
/ d?z (0,v° + 05v%) = —i}{ (dzv® — dzv®) = —Zij{ (v, dz — vzdZ). (B.5g)
R OR OR

B.2.2 General properties
A primary holomorphic field ¢(z) of weight h transforms as

h
foi) = (L) 40@) (B.6)

for any local change of coordinates f. A quasi-primary operator transforms like this only for
f € SL(2,C). Its mode expansion reads

0= L b= S0, ®.7)

- o 2mi

where the integration is counter-clockwise around the origin.
The SL(2,C) vacuum |0) is defined by

Yn>—-h+1: ¢,|0)=0. (B.8)
Its BPZ conjugate (0| satisfies:
Vn<h-1: {(0|¢,=0. (B.9)
The state—operator correspondence associates a state |@) to each operator ¢(z):
) := ¢(0) |0) = ¢—n0) . (B.10)

The operator corresponding to the vacuum is the identity 1.! The Hermitian and BPZ
conjugated states are

(6= (01T 0 1(0) = lim 22 (0|61(2), (9] := (0 I+ 06(0) = (1" Jim (0] ().

(B.11)
The energy—momentum tensor is a quasi-primary operator of weight h = 2
Ly,
T(z)=) pevel (B.12)

n

IExceptionally, the state |0) and the operator 1 does not have the same symbol.
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The OPE between T and a primary operator h of weight h is
ho(w) | 9¢(w)

T ~ . B.1
@) ~ e+ (B.13)
The OPE of T with itself defines the central charge ¢
T()T(w) ~ —L2 2T(w) | 9T(w) (B.14)

(z—w)t (z—w)? z—-w

B.2.3 Hermitian and BPZ conjugations

Both conjugations do not change the ghost number of a state.

Hermitian

The Hermitian conjugate of a general state built from n operators A; and a complex number
Als

(AA;--- A, [0)F = A" (0] AL - - AT (B.15)
The Hermitian conjugation defines an anti-linear inner product
(A, B) = (A¥B), (A,B)' = —(B, A). (B.16)
It has the properties
(A,B+XC)=(A,B)+ \4,0), (B+XC,A) = (B,A)+ X*(C, A). (B.17)

The Hermitian adjoint of an operator can then be defined as

(A,0B) = (O'A, B). (B.18)

BPZ
The BPZ conjugate of modes is
$n = (IF 0 9)n = (—1)"(£1)"¢—s, (B.19)

where I*(z) = 1/2. The plus sign is usually used for the closed string, and the minus sign
for the open string. Given a general state built from n operators n and a complex number A,
the conjugation does not change the order of the operators and does not conjugate complex

numbers:
(AAp--- A, [0)) = X (0] (A1) - - (An)". (B.20)

However, it reverses radial ordering such that operators must be (anti-)commuted in radial
ordered expressions.
The BPZ product satisfies

(4,B) = (~)AIP(B, 4). (B.21)
Moreover the inner product is non-degenerate, so
VA: (AB)=0 = |B)=0. (B.22)

Denoting by {|¢,)} a complete basis of states, then the conjugate basis {(¢¢|} is defined
by the BPZ product as
(971 ¢s) = Ors- (B.23)
We have
(@r1¢5) = (=1)/%"5. (B.24)
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Appendix C

Quantum field theory

In this appendix, we gather useful information on quantum field theories. The first section
describes how to compute with path integral with non-trivial measures, generalizing techniques

from finite-dimensional integrals. Then, we summarize the important concepts from the
BRST and BV formalisms.

C.1 Path integrals

In this section, we explain how analysis, algebra and differential geometry are generalized to
infinite-dimensional vector spaces (fields).

C.1.1 Integration measure

In order to construct a path integral for the field ®, one needs to define a notion of distance
on the space of fields. The distance between a field ® and a neighbouring field ® + §® is

168 = G(®)(6®, 6®), (C.1)

where G is the (field-dependent) metric on the field tangent space (the field dependence will
be omitted when no confusion is possible). This induces a metric on the field space itself

2” = G(®)(2, @), (C.2)
from which the integration measure over the field space can be defined as

d®+/det G(). (C.3)

Moreover, the field metric also defines an inner-product between two different elements of
the tangent space or field space:

(6@1,6®2) = G(®)(691,692), (@1, P2) = G(2)(P1, D2). (C4)

Remark C.1 (Metric in component form) If one has a set of spacetime fields ®,(z),
then a local norm is defined by

160,]2 = / dz (@) e (B(2)) 584 ()58 (), (C.5)
which means that the metric in component form is

Gan(2,9)(®) = 5(z — )p(@)va1 ((x). (C.6)
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Locality means that all fields are evaluated at the same point. On a curved space, it is
natural to write v only in terms of the metric g and to set p(z) = +/det g(z), such that the
inner-product is diffeomorphism invariant.

Since a Gaussian integral is proportional to the squareroot of the operator determinant,
the integration measure can be determined by considering the Gaussian integral over the
tangent space:

/ dsgeC@@esn — 1 (C.7)

\/det G(@)

Note that one needs to work on the tangent space because G(®) can depend on the field,
which means that the integral

/ dd e~ C(®)(®:®) (C.8)

is not Gaussian.
Having constructed the Gaussian measure with respect to the metric G(®), it is now
possible to consider the path integral of general functional F' of the fields:

/ % \/det G (D) F(3). (C.9)

The (effective) action S(®) provides a natural metric on the field space by defining vdet G =
-S
e ”, or

1
S = ~3 trln G(®). (C.10)
However, it can be simpler to work with a Gaussian measure by considering only the quadratic

terms in S, and expanding the rest in a power series. In particular, the partition function is
defined from the classical action S by

Z = / d® e St (®), (C.11)

Given an operator D, its adjoint D' is defined