Group Theory. A Physicist's Survey, P. Ramond (Cambridge University Press): Errata

Harold Erbin^{*1}

¹CNRS, LPTENS, École Normale Supérieure, F-75231 Paris, France

26th January 2017

These errata have not been reviewed by the author nor the editor and I may have made some mistakes. Colors red and blue are respectively used to highlight the error and its correction (if necessary).

09/07/2014

- p. 10 (§1): "By Lagrange's theorem, k must be a multiple of n, the order of the group \mathcal{G} ." \rightarrow divisor of N.
- p. 15 (sec. "Groups of order 12"): "(...) the isomorphism $Z_{12} = Z_4 \times Z_3$ obtains, and also (...)" \rightarrow "(...) one obtains the isomorphism $Z_{12} = Z_4 \times Z_3$, and also (...)"
- p. 27 (§2): "Hence a group can be perfect" \rightarrow "Hence a non-simple group can be perfect"
- p. 80 (last §): "this algebra contains (2j+1)" \rightarrow "this algebra contains (2j+1) states"
- p. 90 (below eq. 5.73): "of the raising operator $L" \to L^+$
- p. 146 (eq. 8.9): $\bar{T}_{ab} = T_{ab} \to \bar{T}_{ab} = T^{ab}$
- p. 156 (sec. 8.5.2): "the spinor structure of $SO(2n-1) \rightarrow SO(2n+1)$
- p. 209 (middle): $\left[Ad(E_{\alpha_i}\right] \rightarrow \left[Ad(E_{\alpha_i})\right]$
- p. 263 (table): $Z \to C$

^{*}erbin@lpthe.jussieu.fr