Geometrical Methods of Mathematical Physics, B. Schutz (Cambridge University Press): Errata

Harold Erbin*1
${ }^{1}$ Cnrs, Lptens, École Normale Supérieure, F-75231 Paris, France

23rd May 2018

These errata have not been reviewed by the author nor the editor and I may have made some mistakes. Colors red and blue are respectively used to highlight the error and its correction (if necessary).

18/05/2014

- p. 25 (fig. 2.3): $f(V) \rightarrow g(V)$
- p. 46 (eq. 2.12): $\left.\varepsilon^{2}[\bar{V}, \bar{W}] \rightarrow \varepsilon^{2}[\bar{V}, \bar{W}] x^{i}\right|_{P}$
- p. 61 (eq. 2.35): $\tilde{\omega}^{k} \rightarrow \tilde{\omega}^{k^{\prime}}$
- p. 70 (§2): "a displacement $\mathrm{d} \lambda$ " $\rightarrow \mathrm{d} \bar{x}$
- p. 71 (eq. 2.68): $\eta_{\alpha \beta} \bar{V}^{\alpha} \bar{V}^{\beta} \rightarrow \eta_{\alpha \beta} \bar{V}^{\alpha} \bar{W}^{\beta}$
- p. $77(\S 1): \bar{U}^{*}\left(\lambda_{0}+\Delta \lambda\right)=\bar{U}\left(\lambda_{0}+\Delta \lambda\right) \rightarrow \bar{U}^{*}\left(\lambda_{0}\right)=\bar{U}\left(\lambda_{0}+\Delta \lambda\right)$ (thanks to Michael Drumheller)
- p. 100 (item iv): " \ldots) can have $\frac{1}{2} n(n-1)$ arbitrary complex (...) elements (given by $n(n-1)$ real elements)" \rightarrow " \ldots) can have $n(n-1)$ arbitrary complex (...) elements (given by $\frac{1}{2} n(n-1)$ real elements)"
- p. 101 (sec. 3.16): "since very vector" \rightarrow every
- p. 132 (before sec. 4.13): $\bar{a} \cdot(\bar{b} \cdot \bar{c}) \rightarrow \bar{a} \cdot(\bar{b} \times \bar{c})$

[^0]
[^0]: *erbin@lpthe.jussieu.fr

