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Abstract
In this review we present the most general form of the Janis–Newman algorithm.

This extension allows to generate configurations which contain all bosonic fields with
spin less than or equal to two (real and complex scalar fields, gauge fields, metric field)
and with five of the six parameters of the Plebański–Demiański metric (mass, electric
charge, magnetic charge, NUT charge and angular momentum). Several examples are
included to illustrate the algorithm. We also discuss the extension of the algorithm to
other dimensions.
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1 Introduction
1.1 Motivations
General relativity is the theory of gravitational phenomena. It describes the dynamical evol-
ution of spacetime through the Einstein–Hilbert action that leads to Einstein equations. The
latter are highly non-linear differential equations and finding exact solutions is a notoriously
difficult problem.

There are different types of solutions but this review will cover only black-hole-like solu-
tions (type-D in the Petrov classification) which can be described as particle-like objects
that carry some charges, such as a mass or an electric charge.

Black holes are important objects in any theory of gravity for the insight they provide
into the quantum gravity realm. For this reason it is a key step, in any theory, to obtain
all possible black holes solutions. Rotating black holes are the most relevant subcases for
astrophysics as it is believed that most astrophysical black holes are rotating. These solutions
may also provide exterior metric for rotating stars.

The most general solution of this type in pure Einstein–Maxwell gravity with a cosmolo-
gical constant Λ is the Plebański–Demiański metric [1, 2]: it possesses six charges: mass m,
NUT charge n, electric charge q, magnetic charge p, spin a and acceleration α. A challenging
work is to generalize this solution to more complex Lagrangians, involving scalar fields and
other gauge fields with non-minimal interactions, as is typically the case in supergravity. As
the complexity of the equations of motion increase, it is harder to find exact analytical solu-
tions, and one often consider specific types of solutions (extremal, BPS), truncations (some
fields are constant, equal or vanishing) or solutions with restricted number of charges. For
this reason it is interesting to find solution generating algorithms – procedures which trans-
form a seed configuration to another configuration with a greater complexity (for example
with a higher number of charges).

An on-shell algorithm is very precious because one is sure to obtain a solution if one starts
with a seed configuration which solves the equations of motion. On the other hand off-shell
algorithms do not necessarily preserve the equations of motion but they are nonetheless very
useful: they provide a motivated ansatz, and it is always easier to check if an ansatz satisfy
the equations than solving them from scratch. Even if in practice this kind of solution
generating technique does not provide so many new solutions, it can help to understand
better the underlying theory (which can be general relativity, modified gravities or even
supergravity) and it may shed light on the structure of gravitational solutions.

1.2 The Janis–Newman algorithm
The Janis–Newman (JN) algorithm is one of these (off-shell) solution generating techniques,
which – in its original formulation – generates rotating metrics from static ones. It was found
by Janis and Newman as an alternative derivation of the Kerr metric [3], while shortly after
it has been used again to discover the Kerr–Newman metric [4].

This algorithm provides a way to generate axisymmetric metrics from a spherically sym-
metric seed metric through a particular complexification of radial and (null) time coordin-
ates, followed by a complex coordinate transformation. Often one performs eventually a
change of coordinates to write the result in Boyer–Lindquist coordinates.

The original prescription uses the Newman–Penrose tetrad formalism, which appears
to be very tedious since it requires to invert the metric, to find a null tetrad basis where
the transformation can be applied, and lastly to invert again the metric. In [5] Giampieri
introduced another formulation of the JN algorithm which avoids gymnastics with null
tetrads and which appears to be very useful for extending the procedure to more complicated
solutions (such as higher dimensional ones). However it has been so far totally ignored in
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the literature. We stress that all results are totally equivalent in both approaches, and every
computation that can be done with the Giampieri prescription can be done with the other.
Finally [6] provides an alternative view on the algorithm.

In order for the metric to be still real, the radial functions inside the metric must be
transformed such that reality is preserved.1 Despite that there is no rigorous statement
concerning the possible complexification of these functions, some general features have been
worked out in the last decades and a set of rules has been established. Note that this
step is the same in both prescriptions. In particular these rules can be obtained by solving
the equations of motion for some examples and by identifying the terms in the solution [7].
Another approach consists in expressing the metric functions in terms of the Boyer–Lindquist
functions – that appear in the change of coordinates and which are real –, the latter being
then determined from the equations of motion [8, 9].

It is widely believed that the JN algorithm is just a trick without any physical or math-
ematical basis, which is not accurate. Indeed it was proved by Talbot [10] shortly after its
discovery why this transformation was well-defined, and he characterizes under which con-
ditions the algorithm is on-shell for a subclass of Kerr–Schild (KS) metrics (see also [11]).2
KS metrics admit a very natural formulation in terms of complex functions for which (some)
complex change of coordinates can be defined. Note that KS metrics are physically inter-
esting as they contain solutions of Petrov type II and D. Another way to understand this
algorithm has been provided by Schiffer et al. [12] (see also [13]) who showed that some KS
metrics can be written in terms of a unique complex generating function, from which other
solutions can be obtained through a complex change of coordinates. In various papers, New-
man shows that the imaginary part of complex coordinates may be interpreted as an angular
momentum, and there are similar correspondences for other charges (magnetic. . . ) [14–16].
More recently Ferraro shed a new light on the JN algorithm using Cartan formalism [17].
Uniqueness results for the case of pure Einstein theory have been derived in [8]. A recent
account on these different points can be found in [18].

In its current form the algorithm is independent of the gravity theory under considera-
tion since it operates independently at the level of each field in order to generate an ansatz,
and the equations of motion are introduced only at the end to check if the configuration
is a genuine solution. We believe that a better understanding of the algorithm would lead
to an on-shell formulation where the algorithm would be interpreted as some kind of sym-
metry or geometric property. One intuition is that every configuration found with the JN
algorithm and solving the equations of motion is derived from a seed that also solves the
equations of motion (in particular no useful ansatz has been generated from an off-shell seed
configuration).

Other solution generating algorithms rely on a complex formulation of general relativity
which allows complex changes of coordinates. This is the case of the Ernst potential formu-
lation [19, 20] or of Quevedo’s formalism who decomposes the Riemann tensor in irreducible
representations of SO(3,C) ∼ SO(3, 1) and then uses the symmetry group to generate new
solutions [21, 22].

Despite its long history the Janis–Newman algorithm has not produced any new rotating
solution for non-fluid configurations (which excludes radiating and interior solutions) beside
the Kerr–Newman metric [4], and very few known examples have been reproduced [3, 23–
26]. Generically the application the Janis–Newman algorithm to interior and radiating
systems [9, 27–31] consist in deriving a configuration that do not solve the equations of
motion by itself and to interpret the mismatch as a fluid (whose properties can be studied)
– in this review we will not be interested by this kind of applications. Moreover the only

1For simplifying, we will say that we complexify the functions inside the metric when we perform this
transformation, even if in practice we "realify" them.

2It has not been proved that the KS condition is necessary, but all known examples seem to fit in this
category.
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solutions that have been fully derived using the algorithm are the original Kerr metric [3],
the d = 3 BTZ black hole [24, 25] and the d-dimensional Myers–Perry metric with a single
angular momentum [23]: only the metric was found in the other cases [4, 26] and the other
fields had to be obtained using the equations of motion.

A first explanation is that there is no real understanding of the algorithm in its most
general form (as reviewed above it is understood in some cases): there is no geometric or
symmetry-related interpretation. Another reason is that the algorithm has been defined only
for the metric (and real scalar fields) and no extension to the other types of fields was known
until recently. It has also been understood that the algorithm could not be applied in the
presence of a cosmological constant [7]: in particular the (a)dS–Kerr(–Newman) metrics [32]
(see also [1, 2, 33, 34]) cannot be derived in this way despite various erroneous claims [30,
35]. Finally many works [36–44] (to cite only few) are (at least partly) incorrect or not
reliable because they do not check the equations of motion or they perform non-integrable
Boyer–Lindquist changes of coordinates [31, 45, 46].

The algorithm was later shown to be generalizable by Demiański and Newman who
demonstrated by writing a general ansatz and solving the equations of motion that other
parameters can be added [7, 47], even in the presence of a cosmological constant. While one
parameter corresponds to the NUT charge, the other one did not receive any interpretation
until now.3 Unfortunately Demiański did not express his result to a concrete algorithm
(the normal prescription fails in the presence of the NUT charge and of the cosmological
constant) which may explain why this work did not receive any further attention. Note that
the algorithm also failed in the presence of magnetic charges.

A way to avoid problems in defining the changes of coordinates to the Boyer–Lindquist
system and to find the complexification of the functions has been proposed in [8] and exten-
ded in [31]: the method consists in writing the unknown complexified function in terms of
the functions of the coordinate transformation. This philosophy is particularly well-suited
for providing an ansatz which does not relies on a static seed solution.

More recently it has been investigated whether the JN algorithm can be applied in mod-
ified theories of gravity. Pirogov put forward that rotating metrics obtained from the JN
algorithm in Brans–Dicke theory are not solutions if α 6= 1 [51]. Similarly Hansen and
Yunes have shown a similar result in quadratic modified gravity (which includes Gauss–
Bonnet) [52].4 These do not include Sen’s dilaton–axion black hole for which α = 1 (sec-
tion 6.4), nor the BBMB black hole from conformal gravity (section 6.2). Finally it was
proved in [54] that it does not work either for Einstein–Born–Infled theories.5 We note that
all these no-go theorem have been found by assuming a transformation with only rotation.

Previous reviews of the JN algorithm can be found in [18, 55, chap. 19, 8, 38, sec. 5.4]
(see also [56]).

1.3 Summary
The goal of the current work is to review a series of recent papers [57–60] in which the
JN algorithm has been extended in several directions, opening the doors to many new
applications. This review evolved from the thesis of the author [61], which presented the
material from a slightly different perspective, and from lectures given at Hri (Allahabad,
India).

3Demiański’s metric has been generalized in [48–50].
4There are some errors in the introduction of [52]: they report incorrectly that the result from [51]

implies that Sen’s black hole cannot be derived from the JN algorithm, as was done by Yazadjiev [26]. But
this black hole corresponds to α = 1 and as reported above there is no problem in this case (see [53] for
comparison). Moreover they argue that several works published before 2013 did not take into account the
results of Pirogov [51], published in 2013. . .

5It may be possible to circumvent the result of [54] by using the results described in this review since
several tools were not known by its author.
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As explained in the previous section, the JN algorithm was formulated only for the metric
and all other fields had to be found using the equations of motion (with or without using an
ansatz). For example neither the Kerr–Newman gauge field or its associated field strength
could be derived in [4]. The solution to this problem is to perform a gauge transformation
in order to remove the radial component of the gauge field in null coordinates [57]. It is
then straightforward to apply the JN algorithm in either prescription.6 Another problem was
exemplified by the derivation of Sen’s axion–dilaton rotating black hole [63] by Yazadjiev [26],
who could find the metric and the dilaton, but not the axion (nor the gauge field). The reason
is that while the JN algorithm applies directly to real scalar fields, it does not for complex
scalar fields (or for a pair of real fields that can naturally be gathered into a complex scalar).
Then it is necessary to consider the complex scalar as a unique object and to perform the
transformation without trying to keep it real [60]. Hence this completes the JN algorithm
for all bosonic fields with spin less than or equal to two.

A second aspect for which the original form of the algorithm was deficient is configuration
with magnetic and NUT charges and in presence of a cosmological constant. The issue
corresponds to finding how one should complexify the functions: the usual rules do not work
and if there were no way to obtain the functions by complexification then the JN algorithm
would be of limited interest as it could not be exported to other cases (except if one is willing
to solve equations of motion, which is not the goal of a solution generating technique). We
have found that to reproduce Demiański’s result [7] it is necessary to complexify also the
mass and to consider the complex parameter m + in [59, 60] and to shift the curvature
of the spherical horizon. Similarly for configurations with magnetic charges one needs to
consider the complex charge q + ip [60]. Such complex combinations are quite natural from
the point of view of the Plebański–Demiański solution [1, 2] described previously. It is
to notice that the appearance of complex coordinate transformations mixed with complex
parameter transformations was a feature of Quevedo’s solution generating technique [21, 22],
yet it is unclear what the link with our approach really is. Hence the final metric obtained
from the JN algorithm may contain (for vanishing cosmological constant) five of the six
Plebański–Demiański parameters [1, 2] along with Demiański’s parameter.

An interesting fact is that the previous argument works in the presence of the cosmolo-
gical constant only if one considers the possibility of having a generic topological horizons
(flat, hyperbolic or spherical) and for this reason we have provided an extension of the
formalism to this case [59].

We also propose a generalization of the algorithm to any dimension [58], but while new
examples could be found for d = 5 the program could not be carried to the end for d > 5.

All these results provide a complete framework for most of the theories of gravity that
are commonly used. As a conclusion we summarize the features of our new results:

• all bosonic fields with spin ≤ 2;

• topological horizons;

• charges m,n, q, p, a (with a only for Λ = 0);

• extend to d = 3, 5 dimensions (and proposal for higher).

We have written a general Mathematica package for the JN algorithm in Einstein–Maxwell
theory.7 Here is a list of new examples that have been completely derived using the previous
results (all in 4d except when said explicitly):

6Another solution has been proposed by Keane [62] but it is applicable only to the Newman–Penrose
coefficients of the field strength. Our proposal requires less computations and yields directly the gauge field
from which all relevant quantities can easily be derived.

7 Available at http://www.lpthe.jussieu.fr/~erbin/.
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• Kerr–Newman–NUT;

• dyonic Kerr–Newman;

• Yang–Mills Kerr–Newman black hole [64];

• adS–NUT Schwarzschild;

• Demiański’s solution [7];

• ungauged N = 2 BPS solutions [65];

• non-extremal solution in T 3 model [63] (partly derived in [26]);

• SWIP solutions [66];

• (a)dS–charged Taub–NUT–BBMB [67];

• 5d Myers–Perry [68];

• 5d BMPV [69];

• NUT charged black hole8 in gauged N = 2 sugra with F = −iX0X1 [70].

We also found a more direct derivation of the rotating BTZ black hole (derived in another
way by Kim [24, 25]).

1.4 Outlook
A major playground for this modified Janis–Newman (JN) algorithm is (gauged) super-
gravity – where many interesting solutions remain to be discovered – since all the neces-
sary ingredients are now present. Moreover important solutions are still missing in higher-
dimensional Einstein–Maxwell (in particular the charged Myers–Perry solution) and one can
hope that understanding the JN algorithm in higher dimensions would shed light on this
problem. Another open case is whether black rings can also be derived using the algorithm.

A major question about the JN algorithm is whether it is possible to include rotation for
non-vanishing cosmological constant. A possible related problem concerns the addition of
acceleration α, which is the only missing parameter when Λ = 0. It is indeed puzzling that
one could get all Plebański–Demiański parameters but the acceleration, which appears in
the combination a+ iα. Both problems are linked to the fact that the JN algorithm – in its
current form – does not take into account various couplings between the parameters (such
as the spin with the cosmological constant or the acceleration with the mass in the simplest
cases). On the other hand it does not mean that it is impossible to find a generalization
of the algorithm: philosophically the problem is identical to the ones of adding NUT and
magnetic charges.

In any case the meaning and a rigorous derivation of the JN algorithm – perhaps elevating
it to the status of a true solution generating algorithm – are still to be found. It is also
interesting to note that almost all of the examples quoted in the previous section can be
embedded into N = 2 supergravity. This calls for a possible interpretation of the algorithm
in terms of some hidden symmetry of supergravity, or even of string theory.

We hope that our new extension of the algorithm will help to bring it outside the shadow
where it stayed since its creation and to establish it as a standard tool for deriving new
solutions in the various theories of gravity.

8Derived by D. Klemm and M. Rabbiosi, unpublished work.
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1.5 Overview
In section 2 we review the original Janis–Newman algorithm and its alternative form due
to Giampieri before illustrating it with some examples. Section 3 shows how to extend the
algorithm to more complicated set of fields (complex scalars, gauge fields) and parameters
(magnetic and NUT charges, topological horizon). Then section 4 provides a general de-
scription of the algorithm in its most general form. The complex transformation described
in the previous section are derived in section 5. Section 6 describes several examples. Finally
section 7 extends first the algorithm to five dimensions and section 8 generalizes these ideas
to any dimension.

Appendix A gathers useful formulas on coordinate systems in various numbers of di-
mensions. Appendix B reviews briefly the main properties of N = 2 supergravity. Finally
appendix C discusses some additional properties of the JN algorithm.

In our conventions the spacetime signature is mostly plus.

2 Algorithm: main ideas
In this section we summarize the original algorithm together with its extension to gauge
fields. We will see that the algorithm involves the transformations of two different objects
(the tensor structure and the coordinate-dependent functions of the fields) which can be
taken care of separately. The transformation of the tensor structure is simple and no new
idea (for d = 4) will be needed after this section since we will be dealing with the two most
general tensor structures for bosonic fields of spin less than or equal to two (the metric and
vector fields). On the other hand the transformation of the functions is more involved and
we will introduce new concepts through simple examples in the next section before giving
the most general formulation in section 4. We review the two different prescriptions for the
transformation and we illustrate the algorithm with two basic examples: the flat space and
the Kerr–Newman metrics.

2.1 Summary
The general procedure for the Janis–Newman algorithm can be summarized as follows:

1. Perform a change of coordinates (t, r) to (u, r) and a gauge transformation such that
grr = 0 and Ar = 0.

2. Take u, r ∈ C and replace the functions fi(r) inside the real fields by new real-valued
functions f̃i(r, r̄) (there is a set of “empirical” rules).

3. Perform a complex change of coordinates and transform accordingly:

(a) the tensor structure, i.e. the dxµ (two prescriptions: Janis–Newman [3] and
Giampieri [5]);

(b) the functions f̃i(r, r̄).

4. Perform a change of coordinates to simplify the metric (for example to Boyer–Lindquist
system). If the transformation is infinitesimal then one should check that it is a valid
diffeomorphism, i.e. that it is integrable.

Note that in the last point the operations (a) and (b) are independent. In practice one
is performing the algorithm for a generic class of configurations with unspecified fi(r) in
order to obtain general formulas. One leaves point 2 and (3b) implicit since the other steps
are independent of the form of the functions. Then given a specific configuration one can
perform 2 and (3b).
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Throughout the review we will not be interested in showing that the examples discussed
are indeed solutions but merely to explain how to extend the algorithm. All examples we
are discussing have been shown to be solutions of the theory under concerned and we refer
the reader to the original literature for more details. For this reason we will rarely mention
the action or the equations of motion and just discussed the fields and their expressions.

One could add a fifth point to the list: checking the equations of motion. We stress again
that the algorithm is off-shell and there is no guarantee (except in some specific cases [18])
that a solution is mapped to a solution.

2.2 Algorithm
We present the algorithm for a metric gµν and a gauge field Aµ associated with a U(1) gauge
symmetry. This simple case is sufficient to illustrate the main features of the algorithm.

As already mentioned in the introduction, the authors of [4] failed to derive the field
strength of the Kerr–Newman black hole from the Reissner–Nordström one. In the null
tetrad formalism it is natural to write the field strength in terms of its Newman–Penrose
coefficients, but a problem arises when one tries to generate the rotating solution since
one of the coefficients is zero in the case of Reissner–Nordström, but non-zero for Kerr–
Newman. Three different prescriptions have been proposed: two works in the Newman–
Penrose formalism – one with the field strength [62] and one with the gauge field [57] –
while the third extends Giampieri’s approach to the gauge field [57]. Since the proposals
from [57] fit more directly (and parallel each other) inside the prescriptions of Janis–Newman
and Giampieri, we will focus on them. It is also more convenient to work with the gauge
fields since any other quantity can be easily computed from them.

2.2.1 Seed metric and gauge fields

The seed metric and gauge field take the form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2, dΩ2 = dθ2 +H(θ)2 dφ2, (2.1a)
A = fA(r) dt. (2.1b)

The normalized curvature of the (θ, φ) sections (or equivalently of the horizon) is denoted
by κ

κ =
{

+1 S2,

−1 H2 (2.2)

where S2 and H2 are respectively the sphere and the hyperboloid,9 and one has

H(θ) =
{

sin θ κ = 1,
sinh θ κ = −1.

(2.3)

In all this section we will consider the case of spherical horizon with κ = 1.
Introduce Eddington–Finkelstein coordinates (u, r)

du = dt− f−1dr (2.4)

in order to remove the grr term of the metric [3]. Under this transformation the gauge field
becomes

A = fA (du+ f−1dr). (2.5)
9We leave aside the case of the plane R2 with κ = 0. The formulas can easily be extended to this case.
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The changes of coordinate has introduced an Ar component but since it depends only on
the radial coordinate Ar = Ar(r) it can be removed by a gauge transformation.

At the end the metric and gauge fields are

ds2 = −f dt2 + 2dudr + r2dΩ2, (2.6a)
A = fA du. (2.6b)

This last step was missing in [4] and explains why they could not derive the full solution
from the algorithm. The lesson to draw is that the validity of the algorithm depends a lot
on the coordinate basis10 and of the parametrization of the fields, although guiding principle
founded on all known examples seems that one needs to have

grr = 0, Ar = 0. (2.7)

2.2.2 Janis–Newman prescription: Newman–Penrose formalism

The Janis–Newman prescription for transforming the tensor structure relies on the Newman–
Penrose formalism [3, 4, 18].

First one needs to obtain the contravariant expressions of the metric and of the gauge
field

∂2

∂s2 = gµν∂µ∂ν = f ∂r2 − 2 ∂u∂r + 1
r2

(
∂2
θ +

∂2
φ

sin2 θ

)
, (2.8a)

A = −fA ∂r. (2.8b)

Then one introduces null complex tetrads

Zµa = {`µ, nµ,mµ, m̄µ} (2.9)

with flat metric

ηab =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (2.10)

such that
gµν = ηabZµaZ

ν
b = −`µnν − `νnµ +mµm̄ν +mνm̄µ. (2.11)

The explicit tetrad expressions are

`µ = δµr , nµ = δµu −
f

2 δµr , mµ = 1√
2r̄

(
δµθ + i

sin θ δ
µ
φ

)
(2.12)

and the gauge field is
Aµ = −fA `µ. (2.13)

Note that without the gauge transformation there would be an additional term and the
expression of Aµ in terms of the tetrads would be ambiguous.

At this point u and r are allowed to take complex values but keeping `µ and nµ real and
(mµ)∗ = m̄µ and replacing

f(r) −→ f̃(r, r̄) ∈ R, fA(r) −→ f̃A(r, r̄) ∈ R. (2.14)
10The canonical example being that the Kerr metric in quasi-isotropic coordinates cannot be derived

from the Schwarzschild metric in isotropic coordinates while it can be derived in the usual coordinates (see
section 2.3.2).
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Consistency implies that one recovers the seed for r̄ = r and ū = u.
Finally one can perform a complex change of coordinates

u = u′ + ia cos θ, r = r′ − ia cos θ (2.15)

where a is a parameter (to be interpreted as the angular momentum per unit of mass) and
r′, u′ ∈ R. While this transformation seems arbitrary we will show later (sections 4 and 5)
how to extend it and that general consistency limits severely the possibilities. The tetrads
transform as vectors

Z ′µa = ∂x′µ

∂xν
Zνa (2.16)

and this lead to the expressions

`′µ = δµr , n′µ = δµu −
f̃

2 δ
µ
r ,

m′µ = 1√
2(r′ + ia cos θ)

(
δµθ + i

sin θ δ
µ
φ − ia sin θ (δµu − δµr )

)
.

(2.17)

After inverting the contravariant form of the metric and the gauge field one is lead to the
final expressions

ds′2 = −f̃ (du′ − a sin2 θ dφ)2 − 2 (du′ − a sin2 θ dφ)(dr′ + a sin2 θ dφ) + ρ2dΩ2, (2.18a)
A′ = f̃A (du′ − a sin2 θ dφ). (2.18b)

where
ρ2 = |r|2 = r′2 + a2 cos2 θ. (2.19)

The coordinate dependence of the functions can be written as

f̃ = f̃(r, r̄) = f̃(r′, θ) (2.20)

in the new coordinates (and similarly for f̃A), but note that the θ dependence is not arbitrary
and comes solely from Im r.

2.2.3 Giampieri prescription

The net effect of the transformation (2.15) on the tensor structure amounts to the replace-
ments

du −→ du′ − a sin2 θ dφ, dr −→ dr′ + a sin2 θ dφ (2.21)

by comparing (2.6) and (2.18), up to the r2 → ρ2 in front of dΩ2. Is it possible to obtain the
same effect by avoiding the Newman–Penrose formalism and all the computations associated
to changing from covariant to contravariant expressions? Inspecting the infinitesimal form
of (2.15)

du = du′ − ia sin θ dθ, dr = dr′ + ia sin θ dθ, (2.22)

one sees that (2.21) can be recovered if one sets [5]

idθ = sin θ dφ. (2.23)

Note that it should be done only in the infinitesimal transformation and not elsewhere in
the metric. Although some authors [17, 30] mentioned the equivalence between the tetrad
computation and (2.21), it is surprising that this direction has not been followed further.

While this new prescription is not rigorous and there is no known way to derive (2.23),
it continues to hold for the most general seed (section 4) and it gives systematically the
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same results as the Janis–Newman prescription, as can be seen by simple inspection. In
particular this approach is not adding nor removing any of the ambiguities due to the
function transformations that are already present and well-known in JN algorithm. Since
this prescription is much simpler we will continue to use it throughout the rest of this review
(we will show in section 4 how it is modified for topological horizons).

Finally the comparison of the two prescriptions clearly shows that the r2 factor in front
of dΩ2 should be considered as a function instead of a part of the tensor structure: the
replacement r2 → ρ2 is dictated by the rules given in the next section. We did not want to
enter into these subtleties here but this will become evident in section 4.

2.2.4 Transforming the functions

The transformation of the functions is common to both the Janis–Newman and Giampieri
prescriptions since they are independent of the tensor structure. This step is the main
weakness of the Janis–Newman algorithm because there is no unique way to perform the
replacement and for this reason the final result contains some part of arbitrariness. This
provides another incentive for checking systematically if the equations of motion are satisfied.
Nonetheless examples have provided a small set of rules [3, 4, 8, 57]

r −→ 1
2(r + r̄) = Re r, (2.24a)

1
r
−→ 1

2

(
1
r

+ 1
r̄

)
= Re r
|r|2

, (2.24b)

r2 −→ |r|2. (2.24c)

The idea is to use geometric or arithmetic means. All other functions can be reduced to a
combination of them, for example 1/r2 is complexified as 1/|r|2.

Every known configuration which does not involve a magnetic, a NUT charge, complex
scalar fields or powers higher of rthan quadratic can be derived with these rules (these
cases will be dealt with in sections 3 and 4). Hence despite the fact that there is some
arbitrariness, it is ultimately quite limited and very few options are possible in most cases.

2.2.5 Boyer–Lindquist coordinates

Boyer–Lindquist coordinates are defined to be those with the minimal number of non-zero
off-diagonal components in the metric. Performing the transformation (the primes in (2.18)
are now omitted)

du′ = dt′ − g(r)dr′, dφ = dφ′ − h(r)dr, (2.25)

the conditions gtr = grφ′ = 0 are solved for

g(r) = r2 + a2

∆ , h(r) = a

∆ (2.26)

where we have defined
∆(r) = f̃ρ2 + a2 sin2 θ. (2.27)

As indicated by the r-dependence this change of variables is integrable provided that g and
h are functions of r only. However ∆ as given in (2.27) for a generic configuration contains a
θ dependence: one should check that this dependence cancels once restricted to the example
of interest. Otherwise one is not allowed to perform this change of coordinates (but other
systems may still be found).
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Given (2.26) one gets the metric and gauge fields (deleting the prime)

ds2 = −f̃ dt2 + ρ2

∆ dr2 + ρ2dθ2 + Σ2

ρ2 sin2 θ dφ2 + 2a(f̃ − 1) sin2 θ dtdφ, (2.28a)

A = f̃A

(
dt− ρ2

∆ dr − a sin2 θ dφ
)

(2.28b)

with
Σ2

ρ2 = r2 + a2 + agtφ. (2.29)

The rr-term has been computed from

g − a sin2 θ h = ρ2

∆ . (2.30)

Generically the radial component of the gauge field depends only on radial coordinate Ar =
Ar(r) (θ-dependence of the function f̃A sits in a factor 1/ρ2 which cancels the one in front
of dr) and one can perform a gauge transformation in order to set it to zero, leaving

A = f̃A
(
dt− a sin2 θ dφ

)
. (2.31)

2.3 Examples
2.3.1 Flat space

It is straightforward to check that the algorithm applied to the Minkowski metric – which
has f = 1, leading to f̃ = 1 – in spherical coordinates

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) (2.32)

gives again the Minkowski metric but in spheroidal coordinates (A.31) (after a Boyer–
Lindquist transformation)

ds2 = −dt2 + ρ2

r2 + a2 dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, (2.33)

recalling that ρ2 = r2 + a2 cos2 θ. The metric is exactly diagonal because gtφ = 0 for f̃ = 1
from (2.28a).

Hence for flat space the JN algorithm reduces to a change of coordinates, from spherical
to (oblate) spheroidal coordinates: the 2-spheres foliating the space in the radial direction
are deformed to ellipses with semi-major axis a.

This fact is an important consistency check that will be useful when extending the
algorithm to higher dimensions (section 8) or to other coordinate systems (such as one with
direction cosines). Moreover in this case one can forget about the time direction and consider
only the transformation of the radial coordinate.

2.3.2 Kerr–Newman

The seed function is the Reissner–Nordström for which the metric and gauge field are

f(r) = 1− 2m
r

+ q2

r2 , fA = q

r
. (2.34)
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Applications of the rules (2.24) leads to

f̃ = 1− 2mRe r
|r|2

+ q2

|r|2
= 1 + q2 − 2mr′

ρ2 , (2.35a)

f̃A = qRe r
|r|2

= qr′

ρ2 . (2.35b)

These functions together with (2.28) describe correctly the Kerr–Newman solution [18, 71].
For completeness we spell out the expressions of the quantities appearing in the metric

Σ2

ρ2 = r2 + a2 − q2 − 2mr
ρ2 a2 sin2 θ, (2.36a)

∆ = r2 − 2mr + a2 + q2. (2.36b)

In particular ∆ does not contain any θ dependence and the BL transformation is well defined.
Moreover the radial component of the gauge field is

Ar = − f̃Aρ
2

∆ = qr

∆ (2.37)

and it is independent of θ.

3 Extension through simple examples
In this section we motivate through simple examples modifications to the original prescrip-
tion for the transformation of the functions.

3.1 Magnetic charges: dyonic Kerr–Newman
The dyonic Reissner–Nordström metric is obtained from the electric one (2.34) by the re-
placement [72, sec. 6.6]

q2 −→ |Z|2 = q2 + p2 (3.1)

where Z corresponds to the central charge

Z = q + ip. (3.2)

Then the metric function reads

f = 1− 2m
r

+ |Z|
2

r2 . (3.3)

The gauge field receives a new φ-component

A = fA dt− p cos θ dφ = fA du− p cos θ dφ (3.4)

(the last equality being valid after a gauge transformation) and

fA = q

r
. (3.5)

The transformation of the function f under (2.15) is straightforward and yields

f̃ = 1− 2mr′ − |Z|2

ρ2 . (3.6)
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On the other hand transforming directly the r inside fA according to (2.24) does not yield
the correct result. Instead one needs to first rewrite the gauge field function as

fA = Re
(
Z

r

)
(3.7)

from which the transformation proceeds to

f̃A = Re(Zr̄)
|r|2

= qr′ − pa cos θ
ρ2 . (3.8)

Note that it not useful to replace p by ImZ in (3.4) since it is not accompanied by any
r dependence. Moreover it is natural that the factor |Z|2 appears in the metric and this
explains why the charges there do not mix with the coordinates.

The gauge field in BL coordinates is finally

A = qr − pa cos θ
ρ2 dt+

(
−qr
ρ2 a sin2 θ + p(r2 + a2)

ρ2 cos θ
)

dφ (3.9a)

= qr

ρ2 (dt− a sin2 θdφ) + p cos θ
ρ2

(
a dt+ (r2 + a2) dφ

)
. (3.9b)

The radial component has been removed thanks to a gauge transformation since it depends
only on r

∆×Ar = −qr − pa cos θ
ρ2 ρ2 − pa cos θ = −qr. (3.10)

There is a coupling between the parameters a and p which can be interpreted from the
fact that a rotating magnetic charge has an electric quadrupole moment. This coupling is
taken into account from the product of the imaginary parts which yield a real term. In view
of the form of the algorithm such contribution could not arise from any other place. Moreover
the combination Z = q + ip appears naturally in the Plebański–Demiański solution [1, 2].

The Yang–Mills Kerr–Newman black hole found by Perry [64] can also be derived in this
way, starting from the seed

AI = qI

r
dt+ pI cos θ dφ, |Z|2 = qIqI + pIpI (3.11)

where qI and pI are constant elements of the Lie algebra.

3.2 NUT charge and cosmological constant and topological horizon:
(anti-)de Sitter Schwarzschild–NUT

In this subsection we consider general topological horizons

dΩ2 = dθ2 +H(θ)2 dφ2, H(θ) =
{

sin θ κ = 1 (S2),
sinh θ κ = −1 (H2).

(3.12)

The cosmological constant is denoted by Λ. We give only the main formulas to motivate the
modification of the algorithm, leaving the details of the transformation for section 4.

The complex transformation that adds a NUT charge is

u = u′ − 2κ lnH(θ), r = r′ + in, (3.13a)

m = m′ + iκn, κ = κ′ − 4Λ
3 n2. (3.13b)
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Note that it is κ and not κ′ that appears in m. After having shown
The metric derived from the seed (2.1a) is

ds2 = −f̃ (dt− 2κnH ′(θ) dφ)2 + f̃−1 dr2 + ρ2 dΩ2, (3.14)

see (4.33), where
ρ2 = r′2 + n2. (3.15)

The function corresponding to the (a)dS–Schwarzschild metric is

f = κ− 2m
r
− Λ

3 r2 = κ− 2 Re
(m
r

)
− Λ

3 r2. (3.16)

The transformation is

f̃ = κ− 2 Re(mr̄)
|r|2

− Λ
3 |r|

2 = κ′ − 4Λ
3 n2 −

2
[
m′r′ +

(
κ′ − 4Λ

3 n2)n2]
ρ2 − Λ

3 ρ2 (3.17)

which after simplification gives

f̃ = κ′ − 2m′r′ + 2κ′n2

ρ2 − Λ
3 (r′2 + 5n2) + 8Λ

3
n4

ρ2 (3.18)

which corresponds correctly to the function of (a)dS–Schwarzschild–NUT [73].
Note that it is necessary to consider the general case of massive black hole with topological

horizon (if Λ 6= 0 for the latter) even if one is ultimately interested in the m = 0 or κ = 1
cases.

The transformation (3.13) can be interpreted as follows. In similarity with the case of
the magnetic charge, writing the mass as a complex parameter is needed to take into account
some couplings between the parameters that would not be found otherwise. Moreover the
shift of κ is required because the curvature of the (θ, φ) section should be normalized to
κ = ±1 but the coupling of the NUT charge with the cosmological constant modifies the
curvature: the new shift is necessary to balance this effect and to normalize the (θ, φ)
curvature to κ′ = ±1 in the new metric. The NUT charge in the Plebański–Demiański
solution [1, 2] is

` = n

(
1− 4Λ

3 n2
)

(3.19)

so the natural complex combination is m + i` and not m + iκn from this point of view,
and similarly for the curvature [74, sec. 5.3] (such relations appear when taking limit of the
Plebański–Demiański solution to recover subcases).

Finally we conclude this section with two remarks to quote different contexts where the
above expression appear naturally :

• Embedding Einstein–Maxwell into N = 2 supergravity with a negative cosmological
constant Λ = −3g2, the solution is BPS if [73]

κ′ = −1, n = ± 1
2g , (3.20)

in which case κ′ = κ.

• The Euclidean NUT solution is obtained from the Wick rotation

t = −iτ, n = iν. (3.21)

The condition for regularity is [75, 76]

m = m′ − ν
(
κ+ 4Λ

3 ν2
)

= 0. (3.22)
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3.3 Complex scalar fields
For a complex scalar field, or any pair of real fields that can be naturally gathered as a
complex field, one should treat the full field as a single entity instead of looking at the
real and imaginary parts independently. In particular one should not impose any reality
condition. A typical case of such system is the axion–dilaton pair

τ = e−2φ + iσ. (3.23)

In order to demonstrate this principle consider the seed (for a complete example see
section 6.4)

τ = 1 + µ

r
(3.24)

where only the dilaton is non-zero. Then the transformation (2.15) gives

τ ′ = 1 + µ

r
= 1 + µ

r′ − ia cos θ = 1 + µr′

ρ2 + i
µa cos θ
ρ2 . (3.25)

The transformation generates an imaginary part which cannot be obtained if Im τ is treated
separately: the algorithm does not change fields that vanish except if they are components
of a larger field. Note that both τ and τ ′ are harmonic functions.

4 Complete algorithm
In this section we gather all the facts on the Janis–Newman algorithm and we explain how
to apply it to a general setting. We write the formulas corresponding to the most general
configurations that can be obtained. We insist again on the fact that all these results can
also be derived from the tetrad formalism.

4.1 Seed configuration
We consider a general configuration with a metric gµν , gauge fields AIµ, complex scalar fields
τ i and real scalar fields qu. The initial parameters of the seed configuration are the mass m,
electric charges qI , magnetic charges pi and some other parameters λA (such as the scalar
charges). The electric and magnetic charges are grouped in complex parameters

ZI = qI + ipI . (4.1)

All indices run over some arbitrary ranges.
The seed configuration is spherically symmetric and in particular all the fields depend

only on the radial direction r

ds2 = −ft(r) dt2 + fr(r) dr2 + fΩ(r) dΩ2, (4.2a)
AI = f I(r) dt+ pIH ′(θ) dφ, (4.2b)
τ i = τ i(r), qu = qu(r) (4.2c)

where

dΩ2 = dθ2 +H(θ)2 dφ2, H(θ) =
{

sin θ κ = 1 (S2),
sinh θ κ = −1 (H2).

(4.3)

Note that only two functions in the metric are relevant since the last one can be fixed through
a diffeomorphism. All the real functions are denoted collectively by

fi = {ft, fr, fΩ, f
I , qu}. (4.4)
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The transformation to null coordinates is

dt = du−

√
fr
ft

dr (4.5)

and yields

ds2 = −ft du2 − 2
√
ftfr dr2 + fΩ dΩ2, (4.6a)

AI = f I du+ pIH ′ dφ (4.6b)

where the radial component of the gauge field

AIr = f I

√
fr
ft

(4.7)

has been set to zero through a gauge transformation.

4.2 Janis–Newman algorithm
4.2.1 Complex transformation

One performs the complex change of coordinates

r = r′ + i F (θ), u = u′ + iG(θ). (4.8)

In the case of topological horizons the Giampieri ansatz (2.23) generalizes to

i dθ = H(θ) dφ (4.9)

leading to the differentials

dr = dr′ + F ′(θ)H(θ) dφ, du = du′ +G′(θ)H(θ) dφ. (4.10)

The ansatz (4.9) is a direct consequence of the fact that the 2-dimensional slice (θ, φ) is given
by dΩ2 = dθ2 +H(θ)2 dφ2, such that the function in the RHS of (4.9) corresponds to

√
gΩ
φφ

(where g is the static metric), as can be seen by doing the computation with i dθ = H(θ)dφ
and identifying H = H at the end.

The most general known transformation is

F (θ) = n− aH ′(θ) + c

(
1 +H ′(θ) ln H(θ/2)

H ′(θ/2)

)
, (4.11a)

G(θ) = κaH ′(θ)− 2κn lnH(θ)− κcH ′(θ) ln H(θ/2)
H ′(θ/2) , (4.11b)

m = m′ + iκn, (4.11c)

κ = κ′ − 4Λ
3 n2, (4.11d)

where a, c 6= 0 only if Λ = 0 (see section 5 for the derivation). The mass that is transformed
is the physical mass: even if it written in terms of other parameters one should identify it
and transform it.

The parameters a and n correspond respectively to the angular momentum and to the
NUT charge. On the other hand the constant c did not receive any clear interpretation (see
for example [7, 18, 77, sec. 5.3]). It can be noted that the solution is of type II in Petrov
classification (and thus the JN algorithm can change the Petrov type) and it corresponds to
a wire singularity on the rotation axis. Moreover the BL transformation is not well-defined.
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4.2.2 Function transformation

All the real functions fi = fi(r) must be modified to be kept real once r ∈ C

f̃i = f̃i(r, r̄) = f̃i
(
r′, F (θ)

)
∈ R. (4.12)

The last equality means that f̃i can depend on θ only through Im r = F (θ). The condition
that one recovers the seed for r̄ = r = r′ is

f̃i(r′, 0) = fi(r′). (4.13)

If all magnetic charges are vanishing or in terms without electromagnetic charges the
rules for finding the f̃i are

r −→ 1
2(r + r̄) = Re r, (4.14a)

1
r
−→ 1

2

(
1
r

+ 1
r̄

)
= Re r
|r|2

, (4.14b)

r2 −→ |r|2. (4.14c)

Up to quadratic powers of r and r−1 these rules determine almost uniquely the result. This
is not anymore the case when the configurations involve higher power. These can be dealt
with by splitting it in lower powers: generically one should try to factorize the expression
into at most quadratic pieces. Some examples of this with natural guesses are

r4 − b2 = (r2 + b)(r2 − b), r4 + b = r2
(
r2 + b

r2

)
. (4.15)

Moreover the same power of r can be transformed differently, for example
1
rn
−→ 1

rn−2
1
|r|2

. (4.16)

Denoting by Q(r) and P (r) collectively all functions that multiply qI and pI respectively,
all such terms should be rewritten as(

qIQ(r), pIP (r)
)

=
(

Re
(
ZIQ(r)

)
, Im

(
ZIP (r)

))
(4.17)

before performing the transformation (4.8). Note that in this case one does not use the rules
(4.14).

Finally the transformed complex scalars are obtained by simply plugging (4.8)

τ ′i(r′, θ) = τ i
(
r + iF (θ)

)
. (4.18)

4.2.3 Null coordinates

Plugging the transformation (4.8) inside the seed metric and gauge fields (4.6) leads to11

ds2 = −f̃t (du′ + α dr′ + ωH dφ)2 + 2β dr′dφ+ f̃Ω
(
dθ2 + σ2H2 dφ2), (4.19a)

AI = f̃ I (du′ +G′H dφ) + pIH ′ dφ (4.19b)

where (one should not confuse the primes to indicate derivatives from the primes on the
coordinates)

ω = G′ +

√
f̃r

f̃t
F ′, σ2 = 1 + f̃r

f̃Ω
F ′2, α =

√
f̃r

f̃t
, β = f̃r F

′H. (4.20)
11We stress that at this stage these formula do not satisfy Einstein equations, they are just proxies to

simplify later computations.
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4.2.4 Boyer–Lindquist coordinates

The Boyer–Lindquist transformation

du′ = dt′ − g(r′)dr′, dφ = dφ′ − h(r′)dr′, (4.21)

can be used to remove the off-diagonal tr and rφ components of the metric

gt′r′ = gr′φ′ = 0. (4.22)

The solution to these equations is

g(r′) =

√(
f̃tf̃r

)−1
f̃Ω − F ′G′

∆ , h(r′) = F ′

H∆ (4.23)

where
∆ = f̃Ω

f̃r
σ2 = f̃Ω

f̃r
+ F ′2. (4.24)

Remember that the changes of coordinate is valid only if g and h are functions of r′ only.
Inserting (4.23) into (4.19) yields

ds2 = −f̃t (dt′ + ωH dφ′)2 + f̃Ω

∆ dr′2 + f̃Ω
(
dθ2 + σ2H2 dφ′2

)
, (4.25a)

AI = f̃ I

(
dt′ − f̃Ω

∆
√
f̃tf̃r

dr′ +G′H dφ′
)

+ pIH ′ dφ′ (4.25b)

where we recall that

ω = G′ +

√
f̃r

f̃t
F ′, σ2 = 1 + f̃r

f̃Ω
F ′2. (4.26)

Generically one finds Ar = Ar(r) which can be set to zero thanks to a gauge transformation.
Before closing this section we simplify the above formulas for few simple cases that are

often used.

Degenerate Schwarzschild seed A degenerate seed (one unknown function) in Schwar-
zschild coordinates has

fr = f−1
t , fΩ = r2. (4.27)

The above formulas for this case can be found in section 5.1.

Degenerate isotropic seed A degenerate seed in isotropic coordinates has

ft = f−1, fr = f, fΩ = r2f. (4.28)

In this case the above formulas reduced to

ds2 = −f̃−1 (dt+ ωH dφ)2 + f̃ρ2
(

dr2

∆ + dθ2 + σ2H2 dφ2
)
, (4.29a)

AI = f̃ I
(

dt− f̃ρ2

∆ dr +G′H dφ
)

+ pIH ′ dφ (4.29b)

where we recall that

ω = G′ + f̃ F ′, σ2 = 1 + F ′2

ρ2 , ∆ = f̃ρ2 + F ′2. (4.30)
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Constant F The expressions simplify greatly if F ′ = 0 (for example when Λ 6= 0). First
all functions depend only on r since F (θ) = cst

f̃i(r, θ) = f̃i(r, 0). (4.31)

As a consequence the Boyer–Lindquist transformation (4.23)

g(r′) =

√
f̃r

f̃t
, h(r′) = 0 (4.32)

is always well-defined. For the same reason it is always possible to perform a gauge trans-
formation. Finally the metric and gauge fields (4.25) becomes

ds2 = −f̃t
(
dt+G′H dφ

)2 + f̃r dr2 + f̃Ω dΩ2, (4.33a)
AI = f̃ I (dt′ +G′H dφ′) + pIH ′ dφ′. (4.33b)

4.3 Open questions
The algorithm we have described help to work with five (four if Λ 6= 0) of the six parameters
of the Plebański–Demiański (PD) solution. It is tempting to conjecture that it can be
extended to the full set of parameters by generalizing the ideas described in section 3.2
(shifting κ, writing a + iα. . . ). Indeed we have found that these operations were quite
natural in the context of the PD solution and inspiration could be found in [74].

5 Derivation of the transformations
The goal of this section is to derive the form (4.11a) of the possible complex transformations.
This method was first used by Demiański [7] and then generalized in [59]. The idea is to
perform the algorithm in a simple setting (metric with one unknown function and one gauge
field), leaving arbitrary the functions F (θ) and G(θ) in (4.8) and f̃i before solving the
equations of motion to determine them. Then the result can be reinterpreted in terms of
rules to get the functions f̃i from fi (this last part was not discussed in [7]). This selects
the possible complex transformations. Then one can hope that these transformations will
be the most general ones (under the assumptions that are made), and one can use these
transformations in other cases without having to solve the equations. The latter claim can
be justified by looking at the equations of motions for more complex examples: even if one
cannot find directly a solution, one finds that the same structure persists [59] (this is also
motivated by the solutions in [49, 50]). Another strength of this approach is to remove the
ambiguity of the algorithm since the functions are found from the equations of motion, and
this may help when one does not know how to perform precisely the algorithm (for example
in higher dimensions, see section 8).

Another goal of this section is to expose the full technical details of the computations:
Demiański’s paper [7] is short and results are extremely condensed. In particular we uncover
an underlying assumption on the form of the metric function and we show how this lead
to an error an in his formula (14) (already pointed out in [21]). A generalization of this
hypothesis leads to other equations that we could not solve analytically and which may lead
to other complex transformations.

Finally this analysis shows the impossibility to derive the (a)dS–Kerr(–Newman) solu-
tions from the JN algorithm. As discussed in the previous section generalization of the
ansatz may help to avoid this no-go theorem.
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5.1 Setting up the ansatz
We first recall the action and equations of motion before describing the ansatz for the metric
and gauge fields. We refer to section 4 for the general formulas from which the expressions
in this section are derived.

5.1.1 Action and equations of motion

The action for Einstein–Maxwell gravity with cosmological constant Λ reads

S =
∫

d4x
√
−g
(

1
2κ2 (R− 2Λ)− 1

4 F
2
)
, (5.1)

where κ2 = 8πG is the Einstein coupling constant, gµν is the metric with Ricci scalar R and
F = dA is the field strength of the Maxwell field Aµ. In the rest of this section we will set
κ = 1. The corresponding equations of motion (respectively Einstein and Maxwell) are

Gµν + Λgµν = 2Tµν , ∇µFµν = 0, (5.2)

where energy–momentum tensor for the electromagnetic gauge field Aµ is

Tµν = FµρF
ρ

ν −
1
4 gµνF

2. (5.3)

5.1.2 Seed configuration

We are interested in the subcase of (4.2a) where

ft = f, fr = f−1, fΩ = r2. (5.4)

The seed configuration is

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2, (5.5a)
A = fA(r) dt (5.5b)

where we consider spherical and hyperbolic horizons

dΩ2 = dθ2 +H(θ)2 dφ2, H(θ) =
{

sin θ κ = 1,
sinh θ κ = −1.

(5.6)

In terms of null coordinates (4.5) the configuration reads

ds2 = −f du2 − 2 dudr + r2 dΩ2, (5.7a)
A = fA du. (5.7b)

5.1.3 Janis–Newman configuration

The configuration obtained from the Janis–Newman algorithm with a general transformation
(4.8)

r = r′ + i F (θ), u = u′ + iG(θ) (5.8)

corresponds to (we omit the primes on the coordinates)

ds2 = −f̃ (du+ α dr + ωH dφ)2 + 2β drdφ+ ρ2 (dθ2 + σ2H2 dφ2), (5.9a)
A = f̃A (du+G′H dφ) (5.9b)
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where

ρ2 = r2 + F 2, ω = G′ + f̃−1 F ′, σ2 = 1 + F ′2

f̃ρ2
, α = f̃−1, β = f̃−1 F ′H. (5.10)

The Boyer–Lindquist transformation (4.21)

du = dt′ − g(r)dr, dφ = dφ′ − h(r)dr (5.11)

with functions
g(r) = ρ2 − F ′G′

∆ , h(r) = F ′

H∆ , ∆ = f̃ρ2 σ2 (5.12)

leads to (omitting the primes on the coordinates)

ds2 = −f̃t (dt+ ωH dφ)2 + ρ2

∆ dr2 + ρ2 (dθ2 + σ2H2 dφ2), (5.13a)

A = f̃A

(
dt− ρ2

∆ dr +G′H dφ
)
. (5.13b)

5.2 Static solution
It is straightforward to solve the equations (5.2) for the static configuration (5.5).

Only the (t) component of Maxwell equations is non trivial

2f ′A + rf ′′A = 0, (5.14)

the prime being a derivative with respect to r, and its solution is

fA(r) = α+ q

r
(5.15)

where q is a constant of integration that is interpreted as the charge and α is an additional
constant that can be removed by a gauge transformation.

The only relevant Einstein equation is

q2

r2 − κ+ r2Λ + f + rf ′ = 0 (5.16)

whose solution reads
f(r) = κ− 2m

r
+ q2

r2 −
Λ
3 r2, (5.17)

m being a constant of integration that is identified to the mass.
We stress that we are just looking for solutions of Einstein equations and we are not

concerned with regularity (in particular it is well-known that only κ = 1 is well-defined for
Λ = 0).

The solution we will find in the next section should reduce to this one upon setting
F,G = 0.

5.3 Stationary solution
Since Boyer–Lindquist imposes additional restrictions on the solutions we will solve the
equations of motion (5.2) for the configuration in null coordinates (5.9).
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5.3.1 Simplifying the equations

The components (rr) and (rθ) give respectively the equation

G′′ + H ′

H
G′ = ±2F, (5.18a)

F ′
(
G′′ + H ′

H
G′
)

= 2FF ′. (5.18b)

If F ′ = 0 then F is an arbitrary constant and the sign of the first equation can be absorbed
into its definition.12 On the other hand if F ′ 6= 0 one can simplify by the latter in the
second equation and this fixes the sign of the first equation. Then in both cases the relevant
equation reduces to

G′′ + H ′

H
G′ = 2F, (5.19)

which depends only on θ and allows to solve for G in terms of F .
Integrating the r-component of the Maxwell equation gives

f̃A = q r

r2 + F 2 + α
r2 − F 2

r2 + F 2 . (5.20)

The θ-equation reads
αF ′ = 0 (5.21)

which implies α = 0 if F ′ 6= 0. The φ- and t-equations follow from these two equations. As
seen above, α can be removed in the static limit F → 0 and in the rest of this section we
consider only the case13

α = 0. (5.22)
The (tr) equation contains only r-derivatives of f̃ and can be integrated, giving14

f̃ = κ− 2mr − q2 + 2F (κF +K)
r2 + F 2 − Λ

3 (r2 + F 2)− 4Λ
3 F 2 + 8Λ

3
F 4

r2 + F 2 (5.23)

where again m is a constant of integration interpreted as the mass and the function K is
defined by

2K = F ′′ + H ′

H
F ′. (5.24)

This implies the equations (rφ) and (θθ).
As explained below (4.12) the θ-dependence should be contain in F (θ) only. The second

term of the function f̃ contains some lonely θ from the H(θ) in the function K: this means
that they should be compensated by the F , and we therefore ask that the sum κF +K be
constant15

κF ′ +K ′ = 0 =⇒ κF +K = κn. (5.25)
The parameter n is interpreted as the NUT charge.

The components (tθ) and (θφ) give the same equation

ΛF ′ = 0. (5.26)

Finally one can check that the last three equations (tt), (tφ) and (φφ) are satisfied.
12In particular all expressions are quadratic in F , but only linear in F ′.
13We relax this assumption in section 5.4.2.
14In [7] the last term of f̃ is missing as pointed out in [21].
15In section 5.4.1 we relax this last assumption by allowing non-constant κF + K. In this context the

equations and the function f̃ are modified and this provides an explanation for the Demiański’s error in f̃
in [7].
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5.3.2 Summary of the equations

The equations to be solved are

2F = G′′ + H ′

H
G′, (5.27a)

κn = κF +K, (5.27b)
0 = ΛF ′ (5.27c)

and the function f̃ is

f̃ = κ− 2mr − q2 + 2F (κF +K)
r2 + F 2 − Λ

3 (r2 + F 2)− 4Λ
3 F 2 + 8Λ

3
F 4

r2 + F 2 . (5.27d)

We also defined
2K = F ′′ + H ′

H
F ′. (5.27e)

As explained in the introduction the second step will be to explain (5.27d) in terms of new
rules for the algorithm: they have been found in [59] and this was the topic of section 4.2.

In the next subsections we solve explicitly the equations (5.27) in both cases Λ 6= 0 and
Λ = 0.

5.3.3 Solution for Λ 6= 0

Equation (5.27c) implies that F ′ = 0, from which K = 0 follows by definition; then one
obtains

F (θ) = n (5.28)
by compatibility with (5.27b) and since K(θ) = 0.

Solution to (5.27a) is

G(θ) = c1 − 2κn lnH(θ) + c2 ln H(θ/2)
H ′(θ/2) (5.29)

where c1 and c2 are two constants of integration. Since only G′ appears in the metric we
can set c1 = 0. On the other hand the constant c2 can be removed by the transformation

du = du′ − c2 dφ (5.30)

since one has (
ln H(θ/2)
H ′(θ/2)

)′
= 1
H(θ) . (5.31)

The solution to the system (5.27) is thus

F (θ) = n, G(θ) = −2κn lnH(θ). (5.32)

The function f̃ then takes the form

f̃ = κ− 2mr − q2 + 2κn2

r2 + n2 − Λ
3
r4 + 6n2r2 − 3n4

r2 + n2 . (5.33)

This corresponds to the (a)dS–Schwarzschild–NUT solution: compare with (3.18) and (4.33).
The parameter ∆ in the BL transformation (4.24) is

∆ = κr2 − 2mr + q2 + Λn4 − Λ
3 r4 − n2(κ+ 2Λr2). (5.34)
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As noted by Demiański the only parameters that appear are the mass and the NUT
charge, and it is not possible to add angular momentum for non-vanishing cosmological
constant.16 As a consequence the JN algorithm cannot provide a derivation of the (a)dS–
Kerr–Newman solution.

5.3.4 Solution for Λ = 0

The solution to the differential equation (5.27b) is

F (θ) = n− aH ′(θ) + c

(
1 +H ′(θ) ln H(θ/2)

H ′(θ/2)

)
(5.35)

where a and c denote two constants of integration.
We solve the equation (5.27a) for G

G(θ) = c1 + κ aH ′(θ)− κ cH ′(θ) ln H(θ/2)
H ′(θ/2) − 2κn lnH(θ)

+ (a+ c2) ln H(θ/2)
H ′(θ/2)

(5.36)

and c1, c2 are constants of integration. Again since only G′ appears in the metric we can set
c1 = 0. We can also remove the last term with the transformation

du = du′ − (c2 + a)dφ. (5.37)

One finally gets

F (θ) = n− aH ′(θ) + c

(
1 +H ′(θ) ln H(θ/2)

H ′(θ/2)

)
, (5.38a)

G(θ) = κ aH ′(θ)− κ cH ′(θ) ln H(θ/2)
H ′(θ/2) − 2κn lnH(θ). (5.38b)

This solution was already found in [49] for the case κ = 1 by solving directly Einstein–
Maxwell equations, starting with a metric ansatz of the form (5.9). Our aim was to show
that the same solution can be obtained by applying Demiański’s method to all the quantities,
including the gauge field.

The BL transformation is well defined only for c = 0, in which case

g = r2 + a2 + n2

∆ , h = κa

∆ , ∆ = κr2 − 2mr + q2 − κn2 + κa2. (5.39)

The function f̃ reads

f̃ = κ− 2mr − q2

ρ2 + κn(n− aH ′)
ρ2 , ρ2 = r2 + (n− aH ′)2 (5.40)

and this corresponds to the Kerr–Newman–NUT solution [73, sec. 2.2].

5.4 Relaxing assumptions
In the derivation of section 5.3.1 we have made two assumptions in order to recover the
simplest case. The goal of this section is to show how these assumptions can be lifted, even
if this does not lead to useful results: one cannot solve the equations in one case while in
the other it is not clear how to recast the result in terms of a complex transformation.

16In [78] Leigh et al. generalized Geroch’s solution generating technique and also found that only the
mass and the NUT charge appear when Λ 6= 0. We would like to thank D. Klemm for this remark.
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5.4.1 Metric function F -dependence

In section 5.3.1 we obtained the equation (5.27b)

κF +K = κn, 2K = F ′′ + H ′

H
F ′ (5.41)

by requiring that the function (5.27d)

f̃ = κ− 2mr − q2 + 2F (κF +K)
r2 + F 2 − Λ

3 (r2 + F 2)− 4Λ
3 F 2 + 8Λ

3
F 4

r2 + F 2 (5.42)

depends on θ only through F (θ). A more general assumption would be that κF +K is some
function χ = χ(F )

κF +K = κχ(F ). (5.43)

First if F ′ = 0 then K = 0 and the definition of K implies

χ = F = n. (5.44)

The (tθ)- and (θφ)-components give the equation

4ΛF 2F ′ = F ′ ∂Fχ. (5.45)

If Λ = 0 we find that
∂Fχ = 0 =⇒ χ = n (5.46)

which reduces to the case studied in section 5.3.1, while if F ′ = 0 this equation does not
provide anything.

On the other hand if F ′ 6= 0 and Λ 6= 0 then the previous equation becomes

∂Fχ = 4ΛF 2 (5.47)

which can be integrated to
χ(F ) = n+ 4

3 ΛF 3 (5.48)

(notice that the limit Λ → 0 is coherent). Plugging this function into equation (5.43) one
obtains

κF +K = κ

(
n+ 4

3 ΛF 3
)

(5.49)

(remember that F ′ 6= 0). This differential equation is non-linear and we were not able to
find an analytical solution. Despite that this provides a generalization of the algorithm with
non-constant F in the presence of a cosmological constant this is not sufficient for obtaining
(a)dS–Kerr: the form of gθθ given in (5.13) is not the required one.

Nonetheless by inserting the expression of χ in f̃ we see that the last term is killed

f̃ = κ− 2mr − q2 + 2κnF
r2 + F 2 − Λ

3 (r2 + F 2)− 4Λ
3 F 2. (5.50)

One can recognize the function given by Demiański [7] and may explain his error.
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5.4.2 Gauge field integration constant

In section 5.3.1 we obtained a second integration constant α in the expression of the gauge
field

f̃A = q r

r2 + F 2 + α
r2 − F 2

r2 + F 2 . (5.51)

One of the Maxwell equation gives α = 0 if F ′ 6= 0, but otherwise no equation fixes its value.
For this reason we focus on the case F ′ = 0 or equivalently Λ 6= 0 through equation (5.27c).

In this case the function f̃ is modified to

f̃ = κ− 2mr − q2 + 2F (κF +K) + 4α2F 2

r2 + F 2 − Λ
3 (r2 + F 2)− 4Λ

3 F 2 + 8Λ
3

F 4

r2 + F 2 . (5.52)

Equation (5.27c) is modified but it is still solved by F ′ = 0 and all other equations are left
unchanged (in particular κF +K is still given by the function χ(F ) (5.48)). For χ(F ) = n
the configuration with α 6= 0 provides another solution when Λ 6= 0 but it is not clear how
to get it from a complexification of the function.

6 Examples
In this section we list several examples that can be derived from the JN algorithm described
in section 4. Other examples were described previously: Kerr–Newman in section 2.3.2,
dyonic Kerr–Newman and Yang–Mills Kerr–Newman in section 3.1. For simplicity we will
always consider the case κ = 1 except when Λ 6= 0.

The first two examples are the Kerr–Newmann–NUT solution (already derived by an-
other path in section 5.3.4) and the charged (a)dS–BBMB–NUT solution in conformal grav-
ity. We will also give examples from ungauged N = 2 supergravity coupled to nv = 0, 1, 3
vector multiplets (pure supergravity, T3 model and STU model): this theory is reviewed in
appendix B.

6.1 Kerr–Newman–NUT
The Reissner–Nordström metric and gauge fields are given by

ds2 = −f dt2 + f−1 dr2 + r2dΩ2, f = 1− 2m
r

+ q2

r2 , (6.1a)

A = fA dt, fA = q

r
, (6.1b)

m and q being the mass and the electric charge.
The two functions are complexified as

f̃ = 1− 2 Re(mr̄) + q2

|r|2
, f̃A = qRe r

|r|2
. (6.2)

Performing the transformation

u = u′ +
(
a cos θ − 2n ln sin θ

)
, r = r′ + i

(
n− a cos θ

)
, m = m′ + in (6.3)

gives (omitting the primes)

f̃ = 1− 2mr + 2n(n− a cos θ)− q2

ρ2 , ρ2 = r2 + (n− a cos θ)2. (6.4)

30



The metric and the gauge fields in BL coordinates are

ds2 = −f̃ (dt+ Ω dφ)2 + ρ2

∆ dr2 + ρ2(dθ2 + σ2H2dφ2), (6.5a)

A = qr

ρ2

(
dt− (a sin2 θ + 2n cos θ)dφ

)
+Ar dr (6.5b)

where
Ω = −2n cos θ − (1− f̃−1) a sin2 θ, σ2 = ∆

f̃ρ2
,

∆ = r2 − 2mr + a2 + q2 − n2.

(6.6)

This corresponds to the Kerr–Newman–NUT solution [73].
One can check that Ar is a function of r only

Ar = −qr∆ (6.7)

and it can be removed by a gauge transformation.

6.2 Charged (a)dS–BBMB–NUT
The action of Einstein–Maxwell theory with cosmological constant conformally coupled to
a scalar field is [67]

S = 1
2

∫
d4x
√
−g
(
R− 2Λ− 1

6 Rφ
2 − (∂φ)2 − 2αφ4 − F 2

)
, (6.8)

where α is a coupling constant, and we have set 8πG = 1.
For F, α,Λ = 0, the Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB) solution [79,

80] is static and spherically symmetric – it can be seen as the equivalent of the Schwarzschild
black hole in conformal gravity.

The general static charged solution with cosmological constant and quartic coupling
reads

ds2 = −f dt2 + f−1 dr2 + r2 dΩ2, (6.9a)

A = q

r
dt, φ =

√
− Λ

6α
m

r −m
, (6.9b)

f = −Λ
3 r2 + κ

(r −m)2

r2 , (6.9c)

where the horizon can be spherical or hyperbolic. There is one constraint among the para-
meters

q2 = κm2
(

1 + Λ
36α

)
(6.10)

and one has αΛ < 0 in order for φ to be real.
In order to add a NUT charge one performs the JN transformation17

u = u′ − 2n lnH(θ), r = r′ + in, m = m′ + in, κ = κ′ − 4Λ
3 n2. (6.11)

One obtains the metric (omitting the primes)

ds2 = −f̃
(
dt− 2nH ′ dφ

)2 + f̃−1 dr2 + (r2 + n2) dΩ2 (6.12)
17Due to the convention of [67] there is no κ in the transformations.

31



where the function f̃ is

f̃ = −Λ
3 (r2 + n2) +

(
κ− 4Λ

3 n2
)

(r −m)2

r2 + n2 . (6.13)

Note that the term (r −m) is invariant. Similarly one obtains the scalar field

φ =
√
− Λ

6α

√
m2 + n2

r −m
(6.14)

where the m in the numerator as been complexified as |m|. Finally it is trivial to find the
gauge field

A = q

r2 + n2

(
dt− 2n cos θ dφ

)
(6.15)

and the constraint (6.10) becomes

q2 =
(
κ− 4Λ

3 n2
)

(m2 + n2)
(

1 + Λ
36α

)
. (6.16)

An interesting point is that the radial coordinate is redefined in [67] when obtaining the
stationary solution from the static one.

Note that the BBMB solution and its NUT version are obtained from the limit

Λ, α −→ 0, with − Λ
36α −→ 1, (6.17)

which also implies q = 0 from the constraint (6.10). Since no other modifications are needed,
the derivation from the JN algorithm also holds in this case.

6.3 Ungauged N = 2 BPS solutions
A BPS solution is a classical solution which preserves a part of the supersymmetry. The BPS
equations are obtained by setting to zero the variations of the fermionic partners under a
supersymmetric transformation. These equations are first order and under some conditions
their solutions also solve the equations of motion.

In [65, sec. 3.1] (see also [81, sec. 2.2] for a summary), Behrndt, Lüst and Sabra obtained
the most general stationary BPS solution for N = 2 ungauged supergravity. The metric for
this class of solutions reads

ds2 = f−1(dt+ Ω dφ)2 + f dΣ2, (6.18)

with the 3-dimensional spatial metric given in spherical or spheroidal coordinates

dΣ2 = hij dxidxj = dr2 + r2(dθ2 + sin2 θ dφ2) (6.19a)

= ρ2

r2 + a2 dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, (6.19b)

where i, j, k are flat spatial indices (which should not be confused with the indices of the
scalar fields). The functions f and Ω depend on r and θ only.

Then the solution is entirely given in terms of two sets of (real) harmonic functions18

32



{HΛ, HΛ}

f = e−K = i(X̄ΛFΛ −XΛF̄Λ), (6.20a)
εijk∂jΩk = 2e−KAi = (HΛ∂iH

Λ −HΛ∂iHΛ), (6.20b)

FΛ
ij = 1

2 εijk∂kH
Λ, GΛ ij = 1

2 εijk∂kHΛ, (6.20c)

i(XΛ − X̄Λ) = HΛ, i(FΛ − F̄Λ) = HΛ. (6.20d)

The object Ωi is the connection of the line bundle corresponding to the fibration of time over
the spatial manifold (its curl is related to the Kähler connection). Its only non-vanishing
component is Ωφ ≡ Ω = ωH.

Starting from the metric (6.18) in spherical coordinates with Ω = 0, one can use the JN
algorithm of section 4 with

ft = f−1, fr = f, fΩ = r2f, (6.21)

leading to the formula (4.29). The function Ω reads

Ω = ωH = a(1− f̃) sin2 θ + 2n cos θ. (6.22)

Then one needs only to find the complexification of f and to check that it gives the
correct ω, as would be found from the equations (6.20). However it appears that one cannot
complexify directly f since it should be viewed as a composite object made of complex
functions. Therefore one needs to complexify first the harmonic functions HΛ and HΛ (or
equivalently XΛ), and then to reconstruct the other quantities. Nonetheless, equations
(6.20) ensure that finding the correct harmonic functions gives a solution, thus it is not
necessary to check these equations for all the other quantities.

In the next subsections we provide two examples,19 one for pure supergravity as an
appetizer, and then one with nv = 3 multiplets (STU model).

6.3.1 Pure supergravity

As a first example we consider pure (or minimal) supergravity, i.e. nv = 0 [65, sec. 4.2].
The prepotential reads

F = − i4 (X0)2. (6.23)

The function H0 and H0 are related to the real and imaginary parts of the scalar X0

H0 = 1
2(X0 + X̄0) = ReX0, H̄0 = i(X0 − X̄0) = −2 ImX0, (6.24)

while the Kähler potential is given by

f = e−K = X0X̄0. (6.25)

The static solution corresponds to

H0 = X0 = 1 + m

r
(6.26)

18We omit the tilde that is present in [65] to avoid the confusion with the quantities that are transformed
by the JNA. No confusion is possible since the index position will always indicate which function we are
using.

19They correspond to singular solutions, but we are not concerned with regularity here.
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Performing the JN transformation for the angular momentum gives

X̃0 = 1 + m(r + ia cos θ)
ρ2 . (6.27)

This corresponds to the second solution of which is stationary with

ω = m(2r +m)
ρ2 a sin2 θ. (6.28)

Alternatively one can use the JN algorithm to add a NUT charge. In this case using the
rule

r −→ 1
2 (r + r̄) = Re r = r′ (6.29)

must be use for transforming f and r2 (in front of dΩ), leading to

X0 = 1 + m+ in

r
. (6.30)

Note that it gives

f̃ =
(

1 + m

r

)2
+ n2

r2 . (6.31)

It is slightly puzzling that the above rule should be used instead of the two others in (4.14).
One possible explanation is the following: in the seed solution shift the radial coordinate
such that r = R−m and apply the JN transformation in this coordinate system. It is clear
that every function of r is left unchanged while the tensor structure transforms identically
since dr = dR. After the transformation one can undo the coordinate transformation. As
we mentioned earlier the algorithm is very sensible to the coordinate system and to the
parametrization (but it is still not clear why the R-coordinate is the natural one). This kind
of difficulty will reappear in the SWIP solution (section 6.5).

6.3.2 STU model

We now consider the STU model nv = 3 with prepotential [65, sec. 3]

F = −X
1X2X3

X0 . (6.32)

The expressions for the Kähler potential and the scalar fields in terms of the harmonic
functions are complicated and will not be needed (see [65, sec. 3] for the expressions).
Various choices for the functions will give different solutions.

A class of static black hole-like solutions are given by the harmonic functions [65, sec. 4.4]

H0 = h0 + q0

r
, Hi = hi + pi

r
, H0 = Hi = 0. (6.33)

These solutions carry three magnetic pi and one electric q0 charges.
Let’s form the complex harmonic functions

H0 = H0 + iH0, Hi = Hi + iHi. (6.34)

Then the rule for complex function leads to

H0 = h0 + q0(r + ia cos θ)
ρ2 , Hi = hi + pi(r + ia cos θ)

ρ2 , (6.35)
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for which the various harmonic functions read explicitly

H0 = h0 + q0r

ρ2 , Hi = hi + pir

ρ2 , H0 = q0a cos θ
ρ2 , Hi = pia cos θ

ρ2 . (6.36)

This set of functions corresponds to the stationary solution of [65, sec. 4.4] where the mag-
netic and electric dipole momenta are not independent parameters but obtained from the
magnetic and electric charges instead.

6.4 Non-extremal rotating solution in T 3 model
The T 3 model under consideration corresponds to Einstein–Maxwell gravity coupled to an
axion σ and a dilaton φ (with specific coupling constants) and the action is given by (6.50)
with M = 1. This model can be embedded in N = 2 ungauged supergravity with nv = 1,
equal gauge fields A ≡ A0 = A1 and prepotential20

F = −iX0X1, (6.37)

The dilaton and the axion corresponds to the complex scalar field

τ = e−2φ + i σ. (6.38)

Sen derived the rotating black hole for this theory using the fact that it can be embedded
in heterotic string theory [63].

The static metric, gauge field and the complex field read respectively

ds2 = −f1

f2
dt2 + f2

(
f−1

1 dr2 + r2 dΩ2
)
, (6.39a)

A = fA
f2

dt, (6.39b)

τ = e−2φ = f2 (6.39c)

where
f1 = 1− r1

r
, f2 = 1 + r2

r
, fA = q

r
. (6.40)

The radii r1 and r2 are related to the mass m and the charge q by

r1 + r2 = 2m, r2 = q2

m
. (6.41)

Applying the Janis–Newman algorithm with rotation, the two functions f1 and f2 are
complexified as

f̃1 = 1− r1r

ρ2 , f̃2 = 1 + r2r

ρ2 . (6.42)

The final metric in BL coordinates is given by

ds2 = − f̃1

f̃2

[
dt− a

(
1− f̃2

f̃1

)
sin2 θ dφ

]2

+ f̃2

(
ρ2dr2

∆ + ρ2dθ2 + ∆
f̃1

sin2 θ dφ2
)

(6.43)

for which the BL functions are

g(r) = ∆̂
∆ , h(r) = a

∆ (6.44)

20This model can be obtained from the STU model by setting the sections pairwise equal X2 = X0 and
X3 = X1 [82]. It is also a truncation of pure N = 4 supergravity.
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with
∆ = f̃1ρ

2 + a2 sin2 θ, ∆̂ = f̃2ρ
2 + a2 sin2 θ. (6.45)

Once fA has been complexified as

f̃A = qr

ρ2 (6.46)

the transformation of the gauge field is straightforward

A = f̃A

f̃2
(dt− a sin2 θ dφ)− qr

∆ dr. (6.47)

The Ar depending solely on r can again be removed thanks to a gauge transformation.
Finally the scalar field is complex and is transformed as

τ = 1 + r2r̄

ρ2 . (6.48)

The explicit values for the dilaton and axion are then

e−2φ = f̃2, σ = r2a cos θ
ρ2 . (6.49)

This reproduces Sen’s solution and it completes the computation from [26] which could
not derive the gauge field nor the axion. It is interesting to note that for another value of
the dilaton coupling we cannot use the transformation [51, 53].21

6.5 SWIP solutions
Let’s consider the action [66, 83, sec. 12.2]

S = 1
16π

∫
d4x

√
|g|
(
R− 2(∂φ)2 − 1

2 e4φ (∂σ)2 − e−2φF iµνF
iµν + σ F iµν F̃

iµν

)
(6.50)

where i = 1, . . . ,M . WhenM = 2 andM = 6 this action corresponds respectively to N = 2
supergravity with one vector multiplet and to N = 4 pure supergravity, but we keep M
arbitrary. The axion σ and the dilaton φ are naturally paired into a complex scalar

τ = σ + ie−2φ. (6.51)

In order to avoid redundancy we first provide the general metric with a, n 6= 0, and we
explain how to find it from the restricted case a = n = 0. The stationary Israel–Wilson–
Perjés (SWIP) solutions correspond to

ds2 = −e2UW (dt+Aφ dφ)2 + e−2UW−1dΣ2, (6.52a)

Ait = 2e2U Re(kiH2), Ãit = 2e2U Re(kiH1), τ = H1

H2
, (6.52b)

Aφ = 2n cos θ − a sin2 θ(e−2UW−1 − 1), (6.52c)

e−2U = 2 Im(H1H̄2), W = 1− r2
0
ρ2 . (6.52d)

This solution is entirely determined by the two harmonic functions

H1 = 1√
2

eφ0

(
τ0 + τ0M+ τ̄0Υ

r − ia cos θ

)
, H2 = 1√

2
eφ0

(
1 + M+ Υ

r − ia cos θ

)
. (6.53)

21The authors of [52] report incorrectly that [51] is excluding all dilatonic solutions.
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The spatial 3-dimensional metric dΣ2 reads

dΣ2 = hij dxidxj = ρ2 − r2
0

r2 + a2 − r2
0

dr2 + (ρ2 − r2
0)dθ2 + (r2 + a2 − r2

0) sin2 θ dφ2. (6.54)

Finally, r0 corresponds to

r2
0 = |M|2 + |Υ|2 −

∑
i

∣∣Γi∣∣2 (6.55)

where the complex parameters are
M = m+ in, Γi = qi + ipi, (6.56)

m being the mass, n the NUT charge, qi the electric charges and pi the magnetic charges,
while the axion–dilaton charge Υ takes the form

Υ = −1
2
∑
i

(Γ̄i)2

M
. (6.57)

The latter together with the asymptotic values τ0 are defined by

τ ∼ τ0 − ie−2φ0
2Υ
r
. (6.58)

The complex constant ki are determined by

ki = − 1√
2
MΓi + ῩΓ̄i

|M|2 − |Υ|2
. (6.59)

As discussed in the previous section, the transformation of scalar fields is different de-
pending on one is turning on a NUT charge or an angular momentum. For this reason,
starting from the case a = n = 0, one needs to perform the two successive transformations

u = u′ − 2in ln sin θ, r = r′ + in, m = m′ + in, (6.60a)
u = u′ + ia cos θ, r = r′ − ia cos θ, (6.60b)

the order being irrelevant (for definiteness we choose to add the NUT charge first), the
reason being that the transformations of the functions are different in both cases (as in
section 6.3.1). As explained in appendix C.1, group properties of the JN algorithm ensure
that the metric will be transformed as if only one transformation was performed. Then the
metric and the gauge fields are directly obtained, which ensures that the general form of the
solution (6.52) is correct. For that one needs to shift r2 by r2

0 in order to bring the metric
(6.54) to the form (6.19). This modifies the function but one does not need this fact to obtain
the general form. Then one can shift by −r2

0 before dealing with the complexification of the
functions. See [66, p. 17] and section 6.3.1 for discussions about the changes of coordinates.
Since all the functions and the parameters depend only onM, H1 and H2, it is sufficient to
explain their complexification.

The function W is transformed as a real function. On the other hand H1 and H2 are
complex harmonic functions and should be transformed accordingly. For the NUT charge
one should use the rule

r −→ Re r. (6.61)
Then one can perform the second transformation (6.60b) in order to add the angular mo-
mentum by applying the usual rules (4.14). On can see that it yields the correct result.

Finally let’s note that it seems possible to also start from pi = 0 and to turn them on
using the transformation

qi = q′i = qi + ipi, (6.62)
using different rules for complexifying the various terms (depending whether one is dealing
with a real or a complex function/parameter).
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6.6 Gauged N = 2 non-extremal solution
The simplest deformation of N = 2 supergravity with nv vector multiplets consists in the
so-called Fayet–Iliopoulos (FI) gauging. It amounts to gauging (nv + 1) times the diagonal
U(1) group of the SU(2) part of the R-symmetry group (automorphism of the supersym-
metry algebra). The potential can be entirely written in terms of the quantities defined in
appendix B and of the (nv + 1) coupling constants gI , where I = 0, . . . , nv.

We consider the model with prepotential (see also section 6.4)

F = −iX0X1. (6.63)

for which the potential generated by the FI gauging is

V (τ, τ̄) = − 4
τ + τ̄

(
g2

0 + g0g1(τ + τ̄) + g2
1 |τ |

2)
. (6.64)

The goal of this section is to derive the NUT charged black hole from [70] using the JN
algorithm.22

The seed solution is taken to be eq. (4.22) from [70] with j = N = 0

ft = κ−
2mr − 2`2

∑
I gI
∣∣ZI ∣∣2

fΩ
+ fΩ

`2
, (6.65a)

fΩ = r2 −∆2 − δ2, (6.65b)

f I = (r −∆)QI − δ P I
fΩ

, (6.65c)

τ = g0

g1

r + ∆− iδ
r −∆ + iδ

. (6.65d)

where the following quantities have been defined

m = `2P 0

∆
g2

1
[
− (P 1)2P 0 + (Q1)2P 0 − 2Q0Q1P 1]+ g2

0P
0
∣∣Z0
∣∣2

|Z0|2
, (6.66a)

δ = −∆ Q0

P 0 . (6.66b)

The independent parameters are given by QI (electric charges), P I (magnetic charges), gΛ
(FI gaugings), ∆ (scalar charge) and Λ = −3/`2 (the cosmological constant).

In order to perform the complexification the functions are first rewritten as

ft = κ−
2 Re(mr̄)− 2`2

∑
I gI
∣∣ZI ∣∣2

fΩ
+ fΩ

`2
, (6.67a)

fΩ = |r|2 −∆2 − δ2 = |r|2 −
∆2
∣∣Z1
∣∣2

Im(Z1)2 , (6.67b)

f I = Re(QI r̄) ImZ1 −∆ Im(ZIZ1)
ImZ1 fΩ

, (6.67c)

τ = g0

g1

r̄ + ∆− iδ
r̄ −∆ + iδ

. (6.67d)

22The original derivation is due to D. Klemm and M. Rabbiosi and has not been published. I am grateful
to them for allowing me to reproduce it here.
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Applying the transformations (4.8) with (4.11a) gives (omitting the primes)

f̃t = κ+ 4n2

`2
−

2mr + 2
(
κ+ 4n2/`2

)
n2 − 2`2

∑
I gI
∣∣ZI ∣∣2

f̃Ω
+ f̃Ω

`2
, (6.68a)

f̃Ω = r2 + n2 −∆2 − δ2, (6.68b)

f̃ I = (QIr + P In) ImZ1 −∆ Im(ZIZ1)
ImZ1 f̃Ω

, (6.68c)

τ̃ = g0

g1

r + ∆− i(δ + n)
r −∆ + i(δ − n) . (6.68d)

The last step is to simplify these expressions

f̃t = κ+ 4n2

`2
−

2mr + 2κn2 + 8n4/`2 − 2`2
∑
I gI
∣∣ZI ∣∣2

f̃Ω
+ f̃Ω

`2
, (6.69a)

f̃Ω = r2 + n2 −∆2 − δ2, (6.69b)

f̃ I = QI(r −∆) + P I(n− δ)
f̃Ω

, (6.69c)

τ̃ = g0

g1

r + ∆− i(δ + n)
r −∆ + i(δ − n) . (6.69d)

It is straightforward to check that the form of the metric and gauge fields are correctly repro-
duced by the algorithm given in section 4 for the tensor structure. In total this reproduces
the eq. (4.22) and formulas below in [70] with j = 0.

An important thing that we learn here is that the mass parameter needs to be transformed
as if it was not composed of other parameters.

7 Five dimensional algorithm
While in four dimensions we have at our disposal many theorems on the classification of
solutions, this is not the case for higher dimensions and the bestiary for solutions is much
wider and less understood [18, 84]. Rotating solutions in higher dimensions are characterized
by several angular momenta. Important solutions have not yet been discovered, even in the
simplest theories such as the charged rotating black holes with several angular momenta in
pure Einstein–Maxwell gravity.

Generalizing the JN algorithm in other dimensions is challenging and only small steps
have been taken in this direction. For instance Xu recovered Myers–Perry solution with one
angular momentum [68] from the Schwarzschild–Tangherlini solution [23] (see also [85]), and
Kim showed how the rotating BTZ black hole [86] can be obtained from its static limit [24,
25]. One of the difficulty is to be able to perform several successive transformations in order
to introduce all the allowed angular momenta.

In this section we report the successful generalization of the JN algorithm to five dimen-
sions where we recover two examples [58]: the complete Myers–Perry black hole [68] and
the Breckenridge–Myers–Peet–Vafa (BMPV) extremal black hole [69]. We give of proposal
for extending this method to higher dimensions in the next section.

It appears that the two angular momenta can be added one after the other by performing
two successive transformations, each using different rules for complexifying the functions.
These rules can be understood as transforming only the functions that appear in the part
of the metric which describes the rotation plane associated to the angular momentum. Our
method makes use of the Giampieri prescription and we did not succeed in expressing it in
terms of the Janis–Newman prescription.
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A major application of our work would be to find the charged solution with two angular
momenta of the 5d Einstein–Maxwell gravity. This problem is highly non-trivial and there
is few chances that this technique would work directly [85], but one can imagine that a
generalization of Demiański’s approach [7] (see section 5) could lead to new interesting
solutions in five dimensions. An intermediate step is represented by the CCLP metric [87]
which is a solution of the Einstein–Maxwell theory with a Chern–Simons term, but it cannot
be derived from the JN algorithm and we give some intuition about this fact in the last
subsection.

Finally one could seek for an extension of the algorithm to the derivation of black
rings [84, 88]. Similarly it may be possible that such techniques could be used in d = 4 to
derive multicentre solutions (for instance one could imagine adding rotation to both centres
successively, changing coordinate system in-between to place the origin of the coordinates
at each centre).

7.1 Myers–Perry black hole
In this section we show how to recover the Myers–Perry black hole in five dimensions through
the Giampieri prescription. This is a solution of 5-dimensional pure Einstein theory which
possesses two angular momenta and it generalizes the Kerr black hole. The importance of
this solution lies in the fact that it can be constructed in any dimension.

The seed metric is given by the five-dimensional Schwarzschild–Tangherlini metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2
3 (7.1)

where dΩ2
3 is the metric on S3, which can be expressed in Hopf coordinates (see ap-

pendix A.3.2)
dΩ2

3 = dθ2 + sin2 θ dφ2 + cos2 θ dψ2, (7.2)
and the function f(r) is given by

f(r) = 1− m

r2 . (7.3)

An important feature of the JN algorithm is the fact that a given set of transformations
in the (r, φ)-plane generates rotation in the latter. Generating several angular momenta in
different 2-planes would then require successive applications of the JN algorithm on different
hypersurfaces. In order to do so, one has to identify what are the 2-planes which will be
submitted to the algorithm. In five dimensions, the two different planes that can be made
rotating are the planes (r, φ) and (r, ψ). We claim that it is necessary to dissociate the radii
of these 2-planes in order to apply separately the JN algorithm on each plane and hence to
generate two distinct angular momenta. In order to dissociate the parts of the metric that
correspond to the rotating and non-rotating 2-planes, one can protect the function r2 to
be transformed under complex transformations in the part of the metric defining the plane
which will stay static. We thus introduce the function

R(r) = r (7.4)

such that the metric in null coordinates reads

ds2 = −du (du+ 2dr) + (1− f) du2 + r2(dθ2 + sin2 θ dφ2) +R2 cos2 θ dψ2. (7.5)

The first transformation – hence concerning the (r, φ)-plane – is

u = u′ + ia cosχ1, r = r′ − ia cosχ1,

i dχ1 = sinχ1 dφ, with χ1 = θ,

du = du′ − a sin2 θ dφ, dr = dr′ + a sin2 θ dφ,
(7.6)
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and f is replaced by f̃{1} = f̃{1}(r, θ). Indeed one needs to keep track of the order of the
transformation, since the function f will be complexified twice consecutively. On the other
hand R(r) = Re(r) is transformed23 into R′ = r′ and one finds (omitting the primes)

ds2 = −du2 − 2 dudr +
(
1− f̃{1}

)
(du− a sin2 θ dφ)2 + 2a sin2 θ drdφ

+ (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2.
(7.7)

The function f̃{1} is
f̃{1} = 1− m

|r|2
= 1− m

r2 + a2 cos2 θ
. (7.8)

There is a cancellation between the (u, r) and the (θ, φ) parts of the metric

ds2
u,r = (1− f̃{1}) (du− a sin2 θ dφ)2 − du(du+ 2dr) + 2a sin2 θ drdφ+ a2 sin4 θ dφ2,

(7.9a)
ds2
θ,φ = (r2 + a2 cos2 θ)dθ2 +

(
r2 + a2(1− sin2 θ)

)
sin2 θ dφ2. (7.9b)

In addition to the terms present in (7.5) one obtains new components corresponding to
the rotation of the first plane (r, φ). Since the structure is very similar one can perform a
transformation24 in the second plane (r, ψ)

u = u′ + ib sinχ2, r = r′ − ib sinχ2,

idχ2 = − cosχ2 dψ, with χ2 = θ,

du = du′ − b cos2 θ dψ, dr = dr′ + b cos2 θ dψ,
(7.10)

can be applied directly to the metric

ds2 = −du2 − 2 dudr +
(
1− f̃{1}

)
(du− a sin2 θ dφ)2 + 2a sin2 θ dRdφ

+ ρ2dθ2 + (R2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2 (7.11)

where we introduced once again the function R(r) = Re(r) to protect the geometry of the
first plane to be transformed under complex transformations.

The final result (using again R = r′ and omitting the primes) becomes

ds2 = −du2 − 2 dudr +
(
1− f̃{1,2}

)
(du− a sin2 θ dφ− b cos2 θ dψ)2

+ 2a sin2 θ drdφ+ 2b cos2 θ drdψ
+ ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + (r2 + b2) cos2 θ dψ2

(7.12)

where
ρ2 = r2 + a2 cos2 θ + b2 sin2 θ. (7.13)

Furthermore, the function f̃{1} has been complexified as

f̃{1,2} = 1− m

|r|2 + a2 cos2 θ
= 1− m

r′2 + a2 cos2 θ + b2 sin2 θ
= 1− m

ρ2 . (7.14)

The metric can then be transformed into the Boyer–Lindquist (BL) using

du = dt− g(r) dr, dφ = dφ′ − hφ(r) dr, dψ = dψ′ − hψ(r) dr. (7.15)
23Note that as a function this corresponds to the rule (4.14a) but we will see below that R is better

interpreted as a coordinate since below it will appear as dR.
24The easiest justification for choosing the sinus here is by looking at the transformation in terms of

direction cosines, see section 8.2.3. Otherwise this term can be guessed by looking at Myers–Perry non-
diagonal terms.
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Defining the parameters25

Π = (r2 + a2)(r2 + b2), ∆ = r4 + r2(a2 + b2 −m) + a2b2, (7.16)

the functions can be written

g(r) = Π
∆ , hφ(r) = Π

∆
a

r2 + a2 , hψ(r) = Π
∆

b

r2 + b2
. (7.17)

Finally one gets

ds2 = −dt2 +
(
1− f̃{1,2}

)
(dt− a sin2 θ dφ− b cos2 θ dψ)2 + r2ρ2

∆ dr2

+ ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + (r2 + b2) cos2 θ dψ2.

(7.18)

One recovers here the five dimensional Myers–Perry black hole with two angular momenta [68].

7.2 BMPV black hole
7.2.1 Few properties and seed metric

In this section we focus on another example in five dimensions, which is the BMPV black
hole [69, 89]. This solution possesses many interesting properties, in particular it can be
proven that it is the only asymptotically flat rotating BPS black hole in five dimensions
with the corresponding near-horizon geometry [84, sec. 7.2.2, 8.5, 90].26 It is interesting to
notice that even if this extremal solution is a slowly rotating metric, it is an exact solution
(whereas Einstein equations need to be truncated for consistency of usual slow rotation).

For a rotating black hole the BPS and extremal limits do not coincide [84, sec. 7.2, 89,
sec. 1]: the first implies that the mass is related to the electric charge,27 while extremality28

implies that one linear combination of the angular momenta vanishes, and for this reason
we set a = b from the beginning.29 Thus two independent parameters are left and are taken
to be the mass and one angular momentum.

In the non-rotating limit BMPV black hole reduces to the charged extremal Schwarz-
schild–Tangherlini (with equal mass and charge) written in isotropic coordinates. For non-
rotating black hole the extremal and BPS limit are equivalent.

Both the charged extremal Schwarzschild–Tangherlini and BMPV black holes are solu-
tions of minimal (N = 2) d = 5 supergravity (Einstein–Maxwell plus Chern–Simons) whose
bosonic action is [89, sec. 1, 91, sec. 2, 92, sec. 2]

S = − 1
16πG

∫ (
R ?1 + F ∧ ?F + 2λ

3
√

3
F ∧ F ∧A

)
, (7.19)

where supersymmetry imposes λ = 1.
Since extremal limits are different for static and rotating black holes we can guess that

the black hole obtained from the algorithm will not be a solution of the equations of motion
and that it will be necessary to take some limit.

The charged extremal Schwarzschild–Tangherlini black hole is taken as a seed metric [92,
sec. 3.2, 93, sec. 4, 94, sec. 1.3.1]

ds2 = −H−2 dt2 +H (dr2 + r2 dΩ2
3) (7.20)

25See (8.17) for a definition of ∆ in terms of f̃ .
26Other possible near-horizon geometries are S1×S2 (for black rings) and T 3, even if the latter does not

seem really physical. BMPV horizon corresponds to the squashed S3.
27It is a consequence from the BPS bound m ≥

√
3/2 |q|.

28Regularity is given by a bound, which is saturated for extremal black holes.
29If we had kept a 6= b we would have discovered later that one cannot transform the metric to Boyer–

Lindquist coordinates without setting a = b.

42



where dΩ2
3 is the metric of the 3-sphere written in (7.2). The function H is harmonic

H(r) = 1 + m

r2 , (7.21)

and the electromagnetic field reads

A =
√

3
2λ

m

r2 dt = (H − 1) dt. (7.22)

In the next subsections we apply successively the transformations (7.6) and (7.10) with
a = b in the case λ = 1.

7.2.2 Transforming the metric

The transformation to (u, r) coordinates of the seed metric (7.20)

dt = du+H3/2 dr (7.23)

gives

ds2 = −H−2 du2 − 2H−1/2 dudr +Hr2 dΩ2
3 (7.24a)

= −H−2 (du− 2H3/2 dr
)

du+Hr2 dΩ2
3. (7.24b)

For transforming the above metric one should follow the recipe of the previous section:
the transformations (7.6)

u = u′ + ia cos θ, du = du′ − a sin2 θ dφ, (7.25)

and (7.10)
u = u′ + ia sin θ, du = du′ − a cos2 θ dψ (7.26)

are performed one after another, transforming each time only the terms that pertain to the
corresponding rotation plane.30 In order to preserve the isotropic form of the metric the
function H is complexified everywhere (even when it multiplies terms that belong to the
other plane).

Since the procedure is exactly similar to the Myers–Perry case we give only the final
result in (u, r) coordinates

ds2 =− H̃−2(du− a(1− H̃3/2)(sin2 θ dφ+ cos2 θ dψ)
)2

− 2H̃−1/2(du− a(1− H̃3/2) (sin2 θ dφ+ cos2 θ dψ)
)

dr
+ 2aH̃ (sin2 θ dφ+ cos2 θ dψ) dr − 2a2H̃ cos2 θ sin2 θ dφdψ

+ H̃
(

(r2 + a2)(dθ2 + sin2 θ dφ2 + cos2 θ dψ2) + a2(sin2 θ dφ+ cos2 θ dψ)2
)
.

(7.27)

After both transformations the resulting function H̃ is

H̃ = 1 + m

r2 + a2 cos2 θ + a2 sin2 θ
= 1 + m

r2 + a2 (7.28)

which does not depend on θ.
It is easy to check that the Boyer–Lindquist transformation (7.15)

du = dt− g(r) dr, dφ = dφ′ − hφ(r) dr, dψ = dψ′ − hψ(r) dr (7.29)
30For another approach see section 7.3.
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is ill-defined because the functions depend on θ. The way out is to take the extremal limit
alluded above.

Following the prescription of [69, 89] and taking the extremal limit

a,m −→ 0, imposing m

a2 = cst, (7.30)

one gets at leading order

H̃(r) = 1 + m

r2 = H(r), a (1− H̃3/2) = −3ma
2 r2 (7.31)

which translate into the metric

ds2 = −H−2
(

du+ 3ma
2 r2 (sin2 θ dφ+ cos2 θ dψ)

)2

− 2H−1/2
(

du+ 3ma
2 r2 (sin2 θ dφ+ cos2 θ dψ)

)
dr

+H r2(dθ2 + sin2 θ dφ2 + cos2 θ dψ2).

(7.32)

Then Boyer–Lindquist functions are

g(r) = H(r)3/2, hφ(r) = hψ(r) = 0 (7.33)

and one gets the metric in (t, r) coordinates

ds2 =− H̃−2
(

dt+ 3ma
2 r2 (sin2 θ dφ+ cos2 θ dψ)

)2

+ H̃
(

dr2 + r2(dθ2 + sin2 θ dφ2 + cos2 θ dψ2)). (7.34)

One can recognize the BMPV solution [69, p. 4, 89, p. 16]. The fact that this solution has
only one rotation parameter can be seen more easily in Euler angle coordinates [89, sec. 3,
95, sec. 2] or by looking at the conserved charges in the φ- and ψ-planes [69, sec. 3].

7.2.3 Transforming the Maxwell potential

The seed gauge field (7.22) in the (u, r) coordinates is

A =
√

3
2 (H − 1) du, (7.35)

since the Ar(r) component can be removed by a gauge transformation. One can apply the
two JN transformations (7.6) and (7.10) with b = a to obtain

A =
√

3
2 (H̃ − 1)

(
du− a (sin2 θ dφ+ cos2 θ dψ)

)
. (7.36)

Then going into BL coordinates with (7.15) and (7.33) provides

A =
√

3
2 (H̃ − 1)

(
dt− a (sin2 θ dφ+ cos2 θ dψ)

)
+Ar(r) dr. (7.37)

Again Ar depends only on r and can be removed by a gauge transformation. Applying the
extremal limit (7.30) finally gives

A =
√

3
2

m

r2

(
dt− a (sin2 θ dφ+ cos2 θ dψ)

)
, (7.38)
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which is again the result presented in [69, p. 5].
Despite the fact that the seed metric (7.20) together with the gauge field (7.22) solves

the equations of motion for any value of λ, the resulting rotating metric solves the equations
only for λ = 1 (see [89, sec. 7] for a discussion). An explanation in this reduction can be
found in the limit (7.30) that was needed for transforming the metric to Boyer–Lindquist
coordinates and which gives a supersymmetric black hole – which necessarily has λ = 1.

7.3 Another approach to BMPV
In section 7.2 we applied the same recipe given in section 7.1 which, according to our claim,
is the standard procedure in five dimensions.

There is another way to derive BMPV black hole. Indeed, by considering that terms
quadratic in the angular momentum do not survive in the extremal limit, they can be added
to the metric without modifying the final result. Hence we can decide to transform all the
terms of the metric31 since the additional terms will be subleading. As a result the BL
transformation is directly well defined and overall formulas are simpler, but we need to take
the extremal limit before the end (this could be done either in (u, r) or (t, r) coordinates).
This section shows that both approaches give the same result.

Applying the two transformations

u = u′ + ia cos θ, du = du′ − a sin2 θ dφ, (7.39a)
u = u′ + ia sin θ, du = du′ − a cos2 θ dψ (7.39b)

successively on all the terms one obtains the metric

ds2 =− H̃−2(du− a(1− H̃3/2)(sin2 θ dφ+ cos2 θ dψ)
)2

− 2H̃−1/2(du− a(sin2 θ dφ+ cos2 θ dψ)
)

dr

+ H̃
(

(r2 + a2)(dθ2 + sin2 θ dφ2 + cos2 θ dψ2) + a2(sin2 θ dφ+ cos2 θ dψ)2
)
,

(7.40)

where again H̃ is given by (7.28)

H̃ = 1 + m

r2 + a2 . (7.41)

Only one term is different when comparing with (7.27).
The BL transformation (7.15) is well-defined and the corresponding functions are

g(r) = a2 + (r2 + a2)H̃(r)
r2 + 2a2 , hφ(r) = hψ(r) = a

r2 + 2a2 (7.42)

which do not depend on θ. They lead to the metric

ds2 =− H̃−2(dt− a(1− H̃3/2)(sin2 θ dφ+ cos2 θ dψ)
)2

+ H̃

[
(r2 + a2)

(
dr2

r2 + 2a2 + dθ2 + sin2 θ dφ2 + cos2 θ dψ2
)

+ a2(sin2 θ dφ+ cos2 θ dψ)2
]
.

(7.43)

At this point it is straightforward to check that this solution does not satisfy Einstein
equations and we need to take the extremal limit (7.30)

a,m −→ 0, imposing m

a2 = cst (7.44)

31In opposition to our initial recipe, but this is done in a controlled way.
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in order to get the BMPV solution (7.34)

ds2 =− H̃−2
(

dt+ 3ma
2 r2 (sin2 θ dφ+ cos2 θ dψ)

)2

+ H̃
(

dr2 + r2(dθ2 + sin2 θ dφ2 + cos2 θ dψ2)). (7.45)

It is surprising that the BL transformation is simpler in this case. Another point that is
worth stressing is that we did not need to take the extremal limit at an intermediate stage,
whereas in section 7.2 we had to in order to get a well-defined BL transformation.

7.4 CCLP black hole
The CCLP black hole [87] (see also [91, sec. 2]) corresponds to the non-extremal generaliza-
tion of the BMPV solution and it possesses four independent charges: two angular momenta
a and b, an electric charge q and the mass m. It is a solution of d = 5 minimal supergravity
(7.19).

The solution reads

ds2 = −dt2 + (1− f̃)(dt− a sin2 θ dφ− b cos2 θ dψ)2 + r2ρ2

∆r
dr2

+ ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + (r2 + b2) cos2 θ dψ2

− 2q
ρ2 (b sin2 θ dφ+ a cos2 θ dψ)(dt− a sin2 θ dφ− b cos2 θ dψ),

(7.46a)

A =
√

3
2

q

ρ2 (dt− a sin2 θ dφ− b cos2 θ dψ), (7.46b)

where the function are given by

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, (7.47a)

f̃ = 1− 2m
ρ2 + q2

ρ4 , (7.47b)

∆r = Π + 2abq + q2 − 2mr2. (7.47c)

Yet, using our prescription, it appears that the metric of this black hole cannot entirely
be recovered. Indeed while the gauge field can be found straightforwardly, all the terms of
the metric but one are generated by our algorithm. The missing term (corresponding to
the last one in (7.46a)) is proportional to the electric charge and the current prescription
cannot generate it since the latter can only appear in f̃ (or in the gauge field); moreover the
algorithm cannot explain the first term in parenthesis since a and b always appear with dφ
and dψ respectively.

This issue may be related to the fact that the CCLP solution cannot be written as
a Kerr–Schild metric but rather as an extended Kerr–Schild one [96–98], which includes
an additional term proportional to a spacelike vector. It appears that the missing term
corresponds precisely to this additional term in the extended Kerr–Schild metric and it is
well-known that the JN algorithm works mostly for Kerr–Schild metrics. Moreover the ∆
computed from (8.17) depends on θ and the BL transformation would not be well-defined if
the additional term is not present to modify ∆ to ∆r.

8 Algorithm in any dimension
Following the same prescription in dimensions higher than five does not lead as nicely to the
exact Myers–Perry solution. Indeed we show in this section that, while the transformation of
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the metric can be done along the same line, the – major – obstacle comes from the function
f that cannot be transformed as expected. Finding the correct complexification seems very
challenging and it may be necessary to use a different complex coordinate transformation in
order to perform a completely general transformation in any dimension. It might be possible
to gain insight into this problem by computing the transformation within the framework of
the tetrad formalism. One may think that a possible solution would be to replace complex
numbers by quaternions, assigning one angular momentum to each complex direction but it
is straightforward to check that this approach is not working.

The key element to perform the algorithm on the metric is to parametrize the metric
on the sphere by direction cosines since these coordinates are totally symmetric under per-
mutation of angular momenta (at the opposite of the spherical coordinates). We are able to
derive the general form of a rotating metric with the maximal number of angular momenta
it can have in d dimensions, but we are not able to apply this result to any specific example
for d ≥ 6, except if all momenta but one are vanishing. Nonetheless this provides a unified
view of the JN algorithm in any d ≥ 3. We conclude this section by few examples, including
the singly-rotating Myers–Perry solution in any dimension and the rotating BTZ black hole.

It would be very desirable to derive the general d-dimensional Myers–Perry solution [68],
or at least to understand why only the metric can be found, and not the function inside.

8.1 Metric transformation
We consider the JN algorithm applied to a general static d-dimension metric and show how
the tensor structure can be transformed. In the following the dimension is taken to be odd
in order to simplify the computations but the final result holds also for d even.

8.1.1 Seed metric and discussion

Consider the d-dimensional static metric (notations are defined in appendix A.1)

ds2 = −f dt2 + f−1 dr2 + r2 dΩ2
d−2 (8.1)

where dΩ2
d−2 is the metric on Sd−2

dΩ2
d−2 = dθd−2 + sin2 θd−2 dΩ2

d−3 =
n∑
i=1

(
dµ2

i + µ2
idφ2

i ). (8.2)

The number n = (d− 1)/2 counts the independent 2-spheres.
In Eddington–Finkelstein coordinates the metric reads

ds2 = (1− f) du2 − du (du+ 2dr) + r2
∑
i

(
dµ2

i + µ2
i dφ2

i

)
. (8.3)

The metric looks like a 2-dimensional space (t, r) with a certain number of additional
2-spheres (µi, φi) which are independent from one another. Then we can consider only the
piece (u, r, µi, φi) (for fixed i) which will transform like a 4-dimensional spacetime, while the
other part of the metric (µj , φj) for all j 6= i will be unchanged. After the first transformation
we can move to another 2-sphere. We can thus imagine to put in rotation only one of these
spheres. Then we will apply again and again the algorithm until all the spheres have angular
momentum: the whole complexification will thus be a n-steps process. Moreover if these 2-
spheres are taken to be independent this implies that we should not complexify the functions
that are not associated with the plane we are putting in rotation.

To match these demands the metric is rewritten as

ds2 = (1− f) du2− du (du+ 2dri1) + r2
i1(dµ2

i1 +µ2
i1dφ2

i1) +
∑
i 6=i1

(
r2
i1dµ2

i +R2µ2
i dφ2

i

)
. (8.4)
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where we introduced the following two functions of r

ri1(r) = r, R(r) = r. (8.5)

This allows to choose different complexifications for the different terms in the metric. It
may be surprising to note that the factors in front of dµ2

i have been chosen to be r2
i1

and
not R2, but the reason is that the µi are all linked by the constraint∑

i

µ2
i = 1 (8.6)

and the transformation of one i1-th 2-sphere will change the corresponding µi1 , but also all
the others, as it is clear from the formula (A.14) with all the ai vanishing but one (this can
also be observed in 5d where both µi are gathered into θ).

8.1.2 First transformation

The transformation is chosen to be

ri1 = r′i1 − i ai1
√

1− µ2
i1
, u = u′ + i ai1

√
1− µ2

i1
(8.7a)

which, together with the ansatz

i
dµi1√
1− µ2

i1

= µi1 dφi1 , (8.7b)

gives the differentials

dri1 = dr′i1 + ai1µ
2
i1 dφi1 , du = du′ − ai1µ2

i1 dφi1 . (8.7c)

It is easy to check that this transformation reproduces the one given in four and five dimen-
sions. The complexified version of f is written as f̃{i1}: we need to keep track of the order
in which we gave angular momentum since the function f̃ will be transformed at each step.

We consider separately the transformation of the (u, r) and {µi, φi} parts. Inserting the
transformations (8.7) in (8.3) results in

ds2
u,r = (1− f̃{i1})

(
du− ai1µ2

i1 dφi1
)2
− du (du+ 2dri1) + 2ai1µ2

i1 dri1dφi1 + a2
i1µ

4
i1 dφ2

i1 ,

ds2
µ,φ =

(
r2
i1 + a2

i1

)
(dµ2

i1 + µ2
i1dφ2

i1) +
∑
i 6=i1

(
r2
i1dµ2

i +R2µ2
i dφ2

i

)
− a2

i1µ
4
i1 dφ2

i1

+ a2
i1

[
− µ2

i1dµ2
i1 + (1− µ2

i1)
∑
i6=i1

dµ2
i

]
.

The term in the last bracket vanishes as can be seen by using the differential of the
constraint ∑

i

µ2
i = 1 =⇒

∑
i

µidµi = 0. (8.9)

Since this step is very important and non-trivial we expose the details

[· · · ] = µ2
i1dµ2

i1 − (1− µ2
i1)
∑
i 6=i1

dµ2
i =

∑
i 6=i1

µidµi

2

−
∑
j 6=i1

µ2
j

∑
i6=i1

dµ2
i

=
∑
i,j 6=i1

(
µiµjdµidµj − µ2

jdµ2
i

)
=
∑
i,j 6=i1

µj
(
µidµj − µjdµi

)
dµi = 0
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by antisymmetry.
Setting ri1 = R = r one obtains the metric

ds2 = (1− f̃{i1})
(

du− ai1µ2
i1 dφi1

)2
− du (du+ 2dr) + 2ai1µ2

i1 drdφi1

+
(
r2 + a2

i1

)
(dµ2

i1 + µ2
i1dφ2

i1) +
∑
i 6=i1

r2(dµ2
i + µ2

i dφ2
i

)
.

(8.10)

It corresponds to Myers–Perry metric in d dimensions with one non-vanishing angular mo-
mentum. We recover the same structure as in (8.4) with some extra terms that are specific
to the i1-th 2-sphere.

8.1.3 Iteration and final result

We should now split again r in functions (ri2 , R). Very similarly to the first time we have

ds2 = (1− f̃{i1})
(

du− ai1µ2
i1 dφi1

)2
− du (du+ 2dri2) + 2ai1µ2

i1 dRdφi1
+
(
r2
i2 + a2

i1

)
dµ2

i1 +
(
R2 + a2

i1

)
µ2
i1dφ2

i1 + r2
i2(dµ2

i2 + µ2
i2dφ2

i2)

+
∑
i 6=i1,i2

(
r2
i2dµ2

i +R2µ2
i dφ2

i

)
.

(8.11)

We can now complexify as

ri2 = r′i2 − iai2
√

1− µ2
i2
, u = u′ + i ai1

√
1− µ2

i2
. (8.12)

The steps are exactly the same as before, except that we have some inert terms. The
complexified functions is now f̃{i1,i2}.

Repeating the procedure n times we arrive at

ds2 =− du2 − 2dudr +
∑
i

(r2 + a2
i )(dµ2

i + µ2
idφ2

i )− 2
∑
i

aiµ
2
i drdφi

+
(

1− f̃{i1,...,in}
)(

du+
∑
i

aiµ
2
idφi

)2

.

(8.13)

One recognizes the general form of the d-dimensional metric with n angular momenta [68].
Let’s quote the metric in Boyer–Lindquist coordinates (omitting the indices on f̃) [68]

ds2 = −dt2 + (1− f̃)
(

dt−
∑
i

aiµ
2
idφi

)2

+ r2ρ2

∆ dr2 +
∑
i

(r2 + a2
i )
(

dµ2
i +µ2

i dφ2
i

)
(8.14)

which is obtained from the transformation

du = dt− g dr, dφi = dφ′i − hi dr (8.15)

with functions
g = Π

∆ = 1
1− F (1− f̃)

, hi = Π
∆

ai
r2 + a2

i

, (8.16)

and where the various quantities involved are (see appendix A.1.4)

Π =
∏
i

(r2 + a2
i ), F = 1−

∑
i

a2
iµ

2
i

r2 + a2
i

= r2
∑
i

µ2
i

r2 + a2
i

,

r2ρ2 = ΠF, ∆ = f̃ r2ρ2 + Π(1− F ).
(8.17)
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Before ending this section, we comment the case of even dimensions: the term ε′ r2dα2

is complexified as ε′ r2
i1

dα2, since it contributes to the sum∑
i

µ2
i + α2 = 1. (8.18)

This can be seen more clearly by defining µn+1 = α (we can also define φn+1 = 0), in which
case the index i runs from 1 to n+ ε, and all the previous computations are still valid.

8.2 Examples in various dimensions
8.2.1 Flat space

A first and trivial example is to take f = 1. In this case one recovers Minkowski metric in
spheroidal coordinates with direction cosines (appendix A.1.4)

ds2 = −dt2 + F dr̄2 +
∑
i

(r̄2 + a2
i )
(

dµ̄2
i + µ̄2

i dφ̄2
i

)
+ ε′ r2dα2. (8.19)

In this case the JN algorithm is equivalent to a (true) change of coordinates and there is no
intrinsic rotation. The presence of a non-trivial function f then deforms the algorithm.

8.2.2 Myers–Perry black hole with one angular momentum

The derivation of the Myers–Perry metric with one non-vanishing angular momentum has
been found by Xu [23].

The transformation is taken to be in the first plane

r = r′ − ia
√

1− µ2 (8.20)

where µ ≡ µ1. The transformation to the mixed spherical–spheroidal system (appendix A.1.5
is obtained by setting

µ = sin θ, φ1 = φ. (8.21)
In these coordinates the transformation reads

r = r′ − ia cos θ. (8.22)

We will use the quantity

ρ2 = r2 + a2(1− µ2) = r2 + a2 cos2 θ. (8.23)

The Schwarzschild–Tangherlini metric is [99]

ds2 = −f dt2 + f−1 dr2 + r2 dΩ2
d−2, f = 1− m

rd−3 . (8.24)

Applying the previous transformation results in

ds2 = (1− f̃)
(

du− aµ2 dφ
)2
− du (du+ 2dr) + 2aµ2 drdφ

+
(
r2 + a2)(dµ2 + µ2dφ2) +

∑
i 6=1

r2(dµ2
i + µ2

i dφ2
i

)
.

(8.25)

where f has been complexified as

f̃ = 1− m

ρ2rd−5 . (8.26)
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In the mixed coordinate system one has [23, 85]

ds2 =− f̃ dt2 + 2a(1− f̃) sin2 θ dtdφ+ rd−3ρ2

∆ dr2 + ρ2dθ2

+ Σ2

ρ2 sin2 θ dφ2 + r2 cos2 θ2 dΩ2
d−4.

(8.27)

where we defined as usual

∆ = f̃ρ2 + a2 sin2 θ,
Σ2

ρ2 = r2 + a2 + agtφ. (8.28)

This last expression explains why the transformation is straightforward with one angular
momentum: the transformation is exactly the one for d = 4 and the extraneous dimensions
are just spectators.

We have not been able to generalize this result for several non-vanishing momenta for
d ≥ 6, even for the case with equal momenta .

8.2.3 Five-dimensional Myers–Perry

We take a new look at the five-dimensional Myers–Perry solution in order to derive it in
spheroidal coordinates because it is instructive.

The function
1− f = m

r2 (8.29)

is first complexified as
1− f̃{1} = m

|r1|2
= m

r2 + a2(1− µ2) (8.30)

and then as

1− f̃{1,2} = m

|r2|2 + a2(1− µ2)
= m

r2 + a2(1− µ2) + b2(1− ν2) . (8.31)

after the two transformations

r1 = r′1 − ia
√

1− µ2, r2 = r′2 − ib
√

1− ν2. (8.32)

For µ = sin θ and ν = cos θ one recovers the transformations from sections 7.1 and 7.2.
Let’s denote the denominator by ρ2 and compute

ρ2

r2 = r2 + a2(1− µ2) + b2(1− ν2) = (µ2 + ν2)r2 + ν2a2 + µ2b2

= µ2(r2 + b2) + ν2(r2 + a2) = (r2 + b2)(r2 + a2)
(

µ2

r2 + a2 + ν2

r2 + b2

)
.

and thus
r2ρ2 = ΠF. (8.33)

Plugging this into f̃{1,2} we have [68]

1− f̃{1,2} = mr2

ΠF . (8.34)
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8.2.4 Three dimensions: BTZ black hole

As another application we show how to derive the d = 3 rotating BTZ black hole from its
static version [86]

ds2 = −f dt2 + f−1 dr2 + r2dφ2, f(r) = −M + r2

`2
. (8.35)

In three dimensions the metric on S1 in spherical coordinates is given by

dΩ2
1 = dφ2. (8.36)

Introducing the coordinate µ we can write it in oblate spheroidal coordinates

dΩ2
1 = dµ2 + µ2dφ2 (8.37)

with the constraint
µ2 = 1. (8.38)

Application of the transformation

u = u′ + ia
√

1− µ2, r = r′ − ia
√

1− µ2 (8.39)

gives from (8.13)

ds2 =− du2 − 2dudr + (r2 + a2)(dµ2 + µ2dφ2)− 2aµ2 drdφ
+ (1− f̃)(du+ aµ2dφ)2.

(8.40)

The transformation of f is

f̃ = −m+ ρ2

`2
, ρ2 = r2 + a2(1− µ2). (8.41)

The transformation (8.16)

g = ρ2(1− f̃)
∆ , h = a

∆ , ∆ = r2 + a2 + (f̃ − 1)ρ2 (8.42)

to Boyer–Lindquist coordinates leads to the metric (8.14)

ds2 = −dt2 + (1− f̃)(dt+ aµ2dφ)2 + ρ2

∆ dr2 + (r2 + a2)(dµ2 + µ2 dφ2). (8.43)

Finally the constraint µ2 = 1 can be used to remove the µ. In this case one finds

ρ2 = r2, ∆ = a2 + f̃ r2 (8.44)

and the metric simplifies to

ds2 = −dt2 + (1− f̃)(dt+ adφ)2 + r2

a2 + r2f̃
dr2 + (r2 + a2)dφ2. (8.45)

We define the function

N2 = f̃ + a2

r2 = −M + r2

`2
+ a2

r2 . (8.46)

Then redefining the time variable as [24, 25]

t = t′ − aφ (8.47)
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we get (omitting the prime)

ds2 = −N2dt2 +N−2 dr2 + r2(Nφdt+ dφ)2 (8.48)

with the angular shift
Nφ(r) = a

r2 . (8.49)

This is the solution given in [86] with J = −2a.
It has already been showed by Kim that the rotating BTZ black hole can be derived

through the JN algorithm in a different settings [24, 25]: he views the d = 3 solution as the
slice θ = π/2 of the d = 4 solution. Obviously this is equivalent to our approach: we have
seen that µ = sin θ in d = 4 (appendix A.2), and the constraint µ2 = 1 is solved by θ = π/2.
Nonetheless our approach is more direct since the result just follows from a suitable choice
of coordinates and there are no need for advanced justification.

Starting from the charged BTZ black hole

f(r) = −M + r2

`2
−Q2 ln r2, A = −Q2 ln r2, (8.50)

it is not possible to find the charged rotating BTZ black hole from [100, 101, 102, sec. 4.2]:
the solution solves Einstein equations, but not the Maxwell ones. This has been already
remarked using another technique in [103, app. B]. It may be possible that a more general
ansatz is necessary, following section 4 but in d = 3.
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A Coordinate systems
This appendix is partly based on [68, 99, 104]. We present formulas for any dimension before
summarizing them for 4 and 5 dimensions.

A.1 d-dimensional
Let’s consider d = N + 1 dimensional Minkowski space whose metric is denoted by

ds2 = ηµν dxµdxν , µ = 0, . . . , N. (A.1)

In all the following coordinates systems the time direction can separated from the spatial
(positive definite) metric as

ds2 = −dt2 + dΣ2, dΣ2 = γab dxadxb, a = 1, . . . , N, (A.2)

where x0 = t.
One defines by n the number of independent 2-planes of rotation

n =
⌊
N

2

⌋
(A.3)
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such that
d+ ε = 2n+ 2, N + ε = 2n+ 1, ε′ = 1− ε (A.4)

where

ε = 1
2(1− (−1)d) =

{
0 d even (or N odd)
1 d odd (or N even),

(A.5)

and conversely for ε′.

A.1.1 Cartesian system

The usual Cartesian metric is

dΣ2 = δabdxadxb = dxadxa = dx2. (A.6)

A.1.2 Spherical

Introducing a radial coordinate r, the flat space metric can be written as a (N − 1)-sphere
of radius r

dΣ2 = dr2 + r2dΩ2
N−1. (A.7)

The term dΩ2
N−1 corresponds the metric on the unit (N−1)-sphere SN−1, which is parame-

trized by (N − 1) angles θi and is defined recursively as

dΩ2
N−1 = dθ2

N−1 + sin2 θN−1 dΩ2
N−2. (A.8)

This surface can be embedded in N -dimensional flat space with coordinates Xa con-
strained by

XaXa = 1. (A.9)

A.1.3 Spherical with direction cosines

In d-dimensions there are n orthogonal 2-planes,32 thus we can pair 2n of the embedding
coordinates Xa (A.9) as (Xi, Yi) which are parametrized as

Xi + iYi = µieiφi , i = 1, . . . n. (A.10)

For d even there is an extra unpaired coordinate that is taken to be

XN = α. (A.11)

Each pair parametrizes a 2-sphere of radius µi. The µi are called the direction cosines
and satisfy ∑

i

µ2
i + ε′α2 = 1 (A.12)

since there is one superfluous coordinate from the embedding. Finally the metric is

dΩ2
N−1 =

∑
i

(
dµ2

i + µ2
i dφ2

i

)
+ ε′ dα2. (A.13)

The interest of these coordinates is that all rotational directions are symmetric.
32Note that this is linked to the fact that the little group of massive representation in D dimension is

SO(N), which possess n Casimir invariants [68].
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A.1.4 Spheroidal with direction cosines

From the previous system we can define the spheroidal (r̄, µ̄i, φ̄i) system – adapted when
some of the 2-spheres are deformed to ellipses – by introducing parameters ai such that (for
d odd)

r2µ2
i = (r̄2 + a2

i )µ̄2
i ,

∑
i

µ̄2
i = 1. (A.14)

This last condition implies that

r2 =
∑
i

(r̄2 + a2
i )µ̄2

i = r̄2 +
∑
i

a2
i µ̄

2
i . (A.15)

In these coordinates the metric reads

dΣ2 = F dr̄2 +
∑
i

(r̄2 + a2
i )
(

dµ̄2
i + µ̄2

i dφ̄2
i

)
+ ε′ r2dα2 (A.16)

and we defined
F = 1−

∑
i

a2
i µ̄

2
i

r̄2 + a2
i

=
∑
i

r̄2µ̄2
i

r̄2 + a2
i

. (A.17)

Here the ai are just introduced as parameters in the transformation, but in the main
text they are interpreted as "true" rotation parameters, i.e. angular momenta (per unit of
mass) of a black hole. They all appear on the same footing.

Another quantity of interest is

Π =
∏
i

(r̄2 + a2
i ). (A.18)

A.1.5 Mixed spherical–spheroidal

We consider the deformation of the spherical metric where one of the 2-sphere is replaced
by an ellipse [85, sec. 3].

To shorten the notation let’s define

θ = θN−1, φ = θN−2. (A.19)

Doing the change of coordinates

sin2 θ sin2 φ = cos2 θ. (A.20)

the metric becomes

dΣ2 = ρ2

r2 + a2 dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + r2 cos2 θ2 dΩ2
d−4 (A.21)

where as usual
ρ2 = r2 + a2 cos2 θ. (A.22)

Except for the last term one recognizes 4-dimensional oblate spheroidal coordinates (A.31).

A.2 4-dimensional
In this section one considers

d = 4, N = 3, n = 1. (A.23)
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A.2.1 Cartesian system

dΣ2 = dx2 + dy2 + dz2. (A.24)

A.2.2 Spherical

dΣ2 = dr2 + r2dΩ2, (A.25a)
dΩ2 = dθ2 + sin2 θ dφ2, (A.25b)

where dΩ2 ≡ dΩ2
2.

A.2.3 Spherical with direction cosines

dΩ2 = dµ2 + µ2 dφ2 + dα2, (A.26a)
µ2 + α2 = 1, (A.26b)

where
x+ iy = rµ eiφ, z = rα, (A.27)

Using the constraint one can rewrite

dΩ2 = 1
1− µ2 dµ2 + µ2 dφ2. (A.28)

Finally the change of coordinates

α = cos θ, µ = sin θ. (A.29)

solves the constraint and gives back the spherical coordinates.

A.2.4 Spheroidal with direction cosines

The oblate spheroidal coordinates from the Cartesian ones are [71, p. 15]

x+ iy =
√
r2 + a2 sin θ eiφ, z = r cos θ, (A.30)

and the metric is

dΣ2 = ρ2

r2 + a2 dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, ρ2 = r2 + a2 cos2 θ. (A.31)

In terms of direction cosines one has

dΣ2 =
(

1− r2µ2

r2 + a2

)
dr2 + (r2 + a2)

(
dµ2 + µ2 dφ2

)
+ r2dα2. (A.32)

A.3 5-dimensional
In this section one considers

d = 4, N = 3, n = 1. (A.33)

A.3.1 Spherical with direction cosines

dΩ2
3 = dµ2 + µ2 dφ2 + dν2 + ν2 dψ2, µ2 + ν2 = 1 (A.34)

where for simplicity

µ = µ1, µ = µ2, φ = φ1, ψ = φ2. (A.35)
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A.3.2 Hopf coordinates

The constraint (A.34) can be solved by

µ = sin θ, ν = cos θ (A.36)

and this gives the metric in Hopf coordinates

dΩ2
3 = dθ2 + sin2 θ dφ2 + cos2 θ dψ2. (A.37)

B Review of N = 2 ungauged supergravity
In order for this review to be self-contained we recall the basic elements of N = 2 super-
gravity without hypermultiplets – we refer the reader to the standard references for more
details [105–107].

The gravity multiplet contains the metric and the graviphoton

{gµν , A0} (B.1)

while each of the vector multiplets contains a gauge field and a complex scalar field

{Ai, τ i}, i = 1, . . . , nv. (B.2)

The scalar fields τ i (the conjugate fields (τ i)∗ are denoted by τ̄ ı̄) parametrize a special
Kähler manifold with metric gī. This manifold is uniquely determined by an holomorphic
function called the prepotential F . The latter is better defined using the homogeneous (or
projective) coordinates XΛ such that

τ i = Xi

X0 . (B.3)

The first derivative of the prepotential with respect to XΛ is denoted by

FΛ = ∂F

∂XΛ . (B.4)

Finally it makes sense to regroup the gauge fields into one single vector

AΛ = (A0, Ai). (B.5)

One needs to introduce two more quantities, respectively the Kähler potential and the
Kähler connection

K = − ln i(X̄ΛFΛ −XΛF̄Λ), Aµ = − i2(∂iK ∂µτ
i − ∂ı̄K ∂µτ̄

ı̄). (B.6)

The Lagrangian for the theory without gauge group is given by

L = −R2 + gī(τ, τ̄) ∂µτ i∂ν τ̄ ı̄ + IΛΣ(τ, τ̄)FΛ
µνF

Σµν −RΛΣ(τ, τ̄)FΛ
µν ?F

Σµν (B.7)

where R is the Ricci scalar and ?FΛ is the Hodge dual of FΛ. The matrix

N = R+ i I (B.8)

can be expressed in terms of F . From this Lagrangian one can introduce the symplectic
dual of FΛ

GΛ = δL
δFΛ = RΛΣF

Σ − IΛΣ ?F
Σ. (B.9)
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C Technical properties
In this chapter we describe few technical properties of the algorithm. We comment on the
group properties that some of the JN transformations possess [59]. Another useful prop-
erty of Giampieri’s prescription is to allow to chain all coordinate transformation, making
computations easier [57]. Then finally we discuss the fact that not all the rules (4.14) are
independent and several choices of complexification are equivalent [57], contrary to what is
commonly believed.

C.1 Group properties
We want to study the JN transformations that form a group: the main motivation is to
state clearly the effect of chaining several transformations. This observation can be useful
for chaining several transformations, therefore adding charges to a solution that is already
non-static (for example adding rotation to a solution that already contains a NUT charge).
More importantly this provides a setting where the algorithm has good chances to preserve
Einstein equations.

We will make the assumptions that the functions F (θ) and G(θ) are linear in some
parameters πA (implicit sum over A)

F (θ) = πAFA(θ), G(θ) = πAGA(θ), (C.1)

where {FA(θ)} and {GA(θ)} are the functions associated to the parameters and A runs over
the dimension of this space. Mathematically the functions are member of an additive group
G with elements in33 F × F (F being the space of functions with second derivatives) with
generators

(
FA(θ), GA(θ)

)
, A = 1, . . . ,dimV since there is an identity element 0 and each

element with coefficients πA possesses an inverse given by −πA. Adding the multiplication
by a scalar turns this group into a vector space but we do not need this extra structure.
As a consequence the sum of two functions F1 = πA1 FA and F2 = πA2 FA gives another
function F3 = πA3 FA with πA3 = πA1 +πA2 . These assumptions are motivated by the results of
section 5 where F and G were solutions of (non-homogeneous) second order linear differential
equations where the πA are the integration constants.

After a first transformation

r = r′ + i F1, u = u′ + iG1 (C.2)

one obtains the metric (omitting the primes)

ds2 =− f̃{1}t (du+HG′1 dφ)2 + f̃
{1}
Ω (dθ2 +H2dφ2)

− 2
√
f̃
{1}
t f̃

{1}
r (du+G′1H dφ)(dr + F ′1H dφ)

(C.3)

where
f̃
{1}
i = f̃

{1}
i (r, F1). (C.4)

Performing a second transformation

r = r′ + i F2, u = u′ + iG2 (C.5)

the previous metric becomes (omitting the primes)

ds2 =− f̃{1,2}t

(
du+H(G′1 +G′2) dφ

)2 + f̃
{1,2}
Ω (dθ2 +H2dφ2)

− 2
√
f̃
{1,2}
t f̃

{1,2}
r

(
du+ (G′1 +G′2)H dφ

)(
dr + (F ′1 + F ′2)H dφ

) (C.6)

33For simplicity we consider the case where F and G are expanded over the same parameters, but this is
not necessarily the case.
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where
f̃
{1,2}
i = f̃

{1,2}
i (r, F1, F2). (C.7)

This function is required to satisfy the following conditions (omitting the primes)

f̃
{1,2}
i (r, F1, 0) = f̃

{1}
i (r, F1), f̃

{1,2}
i (r, F1, F2) = f̃

{2,1}
i (r, F2, F1). (C.8)

The second condition means that the order of the transformations should not matter because
we want to obtain the same solution given identical seed metric and parameters.

The metric (C.6) is obviously equivalent to the one we would get with a unique trans-
formation34

r = r′ + i (F1 + F2), u = u′ + i (G1 +G2). (C.9)

Then, for the transformations which are such that

f̃
{1,2}
i (r, F1, F2) = f̃

{1}
i (r, F1 + F2), (C.10)

the DJN transformations form an Abelian group thanks to the group properties of the
function space. This structure implies that we can first add one parameter, and later another
one (say first the NUT charge, and then an angular momentum). Said another way this
group preserves Einstein equations when the seed metric is a known (stationary) solution.
But note that it may be very difficult to do it as soon as one begins to replace the F in the
functions by their expression, because it obscures the original function – in one word we can
not find f̃i(r, F ) from f̃i(r, θ).

Another point worth to mention is that not all DJN transformation are in this group
since the condition (C.10) may not satisfied: we recall that imposing or not the latter is a
choice that one is doing when performing the algorithm. A simple example is provided by

f(r) = r2, (C.11)

which can be transformed under the two successive transformations

r = r′ + iF1, r′ = r′′ + iF2 (C.12)

in two ways:

1. f̃{1} = |r|2 = r′2 + F 2
1 , f̃{1,2} = |r′|2 + F 2

1 = r′′2 + F 2
1 + F 2

2 , (C.13a)

2. f̃{1} = |r|2 = |r′ + iF1|
2
,

f̃{1,2} = |r′′ + i(F1 + F2)|2

= r′′2 + F 2
1 + F 2

2 + 2F1F2.
(C.13b)

Only the second option satisfy the property (C.10) that leads to a group. Such an example
is provided in 5d where the function fΩ(r) = r2 is successively transformed as [58]

r2 −→ |r|2 = r2 + a2 cos2 θ −→ |r|2 + a2 cos2 θ = r2 + a2 cos2 θ + b2 sin2 θ, (C.14)

with the functions
F1 = a cos θ, F2 = b sin θ. (C.15)

The condition (C.10) is clearly not satisfied.
34This breaks down when the metric is transformed with more complicated rules, such as in higher

dimensions [58].
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C.2 Chaining transformations
The JN algorithm is summarized by the following table

t → u → u ∈ C → u′ → t′

r → r ∈ C → r′

φ → φ′

f → f̃

(C.16)

where the arrows correspond to the different steps of the algorithm.
A major advantage of Giampieri’s prescription is that one can chain all these transform-

ations since it involves only substitutions and no tensor operations. For this reason it is
much easier to implement on a computer algebra system such as Mathematica. It is then
possible to perform a unique change of variables that leads directly from the static metric
to the rotating metric in any system defined by the function (g, h). For example in the case
of rotation for a metric with a single function one finds

dt = dt′ +
(
ah sin2 θ (1− f̃−1)− g + f̃−1) dr′ + a sin2 θ (f̃−1 − 1) dφ′, (C.17a)

dr = (1− ah sin2 θ) dr′ + a sin2 θ dφ′, (C.17b)
dφ = dφ′ − hdr′, (C.17c)

where the complexification of the metric function f can be made at the end. It is impressive
that the algorithm from section 2 can be written in such a compact way.

C.3 Arbitrariness of the transformation
We provide a short comment on the arbitrariness of the complexification rules (4.14). In
particular let’s consider the functions

f1(r) = 1
r
, f2(r) = 1

r2 . (C.18)

The usual rule is to complexify these two functions as

f̃1(r) = Re r
|r|2

, f̃2(r) = 1
|r|2

(C.19)

using respectively the rules (4.14b) and (4.14c) (in the denominator).
But it is possible to arrive at the same result with a different combinations of rules. In

fact the functions can be rewritten as

f1(r) = r

r2 , f2(r) = 1
r

1
r
. (C.20)

The following set of rules results again in (C.19):

• f1: (4.14a) (numerator) and (4.14c) (denominator);

• f2: (4.14a) (first fraction) and (4.14b) (second fraction).
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