Machine learning for complete intersection Calabi-Yau manifolds

Harold Erbin

Mit (Usa) \& Cea-List (France)

In collaboration with:

- Riccardo Finotello (Università di Torino)
arXiv: 2007.13379, 2007.15706

Funded by the European Union (Horizon 2020)

Outline: 1. Motivations

Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

Machine learning analysis

Conclusion

Machine learning

Machine Learning (ML)

Set of techniques for pattern recognition / function approximation without explicit programming.

- learn to perform a task implicitly by optimizing a cost function
- flexible \rightarrow wide range of applications
- general theory unknown (black box problem)

Machine learning

Machine Learning (ML)

Set of techniques for pattern recognition / function approximation without explicit programming.

- learn to perform a task implicitly by optimizing a cost function
- flexible \rightarrow wide range of applications
- general theory unknown (black box problem)

Question

Where does it fit in theoretical physics?

Machine learning

Machine Learning (ML)

Set of techniques for pattern recognition / function approximation without explicit programming.

- learn to perform a task implicitly by optimizing a cost function
- flexible \rightarrow wide range of applications
- general theory unknown (black box problem)

Question

Where does it fit in theoretical physics?

- particle physics
- cosmology
- many-body physics
[1903.10563, Carleo et al.]
- quantum information
- lattice theories
- string theory

String phenomenology

Goal

Find "the" Standard Model from string theory

Method:

- type II / heterotic strings, M-theory, F-theory: $D=10,11,12$
- vacuum choice (flux compactification):
- typically Calabi-Yau (CY) 3- or 4-fold
- fluxes and intersecting branes
\rightarrow reduction to $D=4$
- check consistency (tadpole, susy...)
- read the $D=4$ QFT (gauge group, spectrum...)

String phenomenology

Goal

Find "the" Standard Model from string theory

Method:

- type II / heterotic strings, M-theory, F-theory: $D=10,11,12$
- vacuum choice (flux compactification):
- typically Calabi-Yau (CY) 3- or 4-fold
- fluxes and intersecting branes
\rightarrow reduction to $D=4$
- check consistency (tadpole, susy. . .)
- read the $D=4$ QFT (gauge group, spectrum...)

No vacuum selection mechanism \Rightarrow string landscape

Landscape mapping

String phenomenology:

- find consistent string models
- find generic/common features
- reproduce the Standard model

Landscape mapping

String phenomenology:

- find consistent string models
- find generic/common features
- reproduce the Standard model

Typical questions:

- understand manifolds
- find parameter distribution
- explore consistent vacua
- find good EFTs for low-energy limit

Landscape mapping

String phenomenology:

- find consistent string models
- find generic/common features
- reproduce the Standard model

Typical questions:

- understand manifolds
- find parameter distribution
- explore consistent vacua
- find good EFTs for low-energy limit
- (construct an explicit string field theory)

(to appear in 02/2021)

Number of geometries

Calabi-Yau (CY) manifolds

- CICY (complete intersection in products of projective spaces): 7890 (3-fold), 921,497 (4-fold)
- Kreuzer-Skarke (reflexive polyhedra): 473,800,776 ($d=4$)

String models and flux vacua

- type IIA/IIB models: 10^{500}
- F-Theory: 10^{755} to 10^{3000} (geometries), $10^{272,000}$ (flux vacua)
[Lerche-Lüst-Schellekens '89; hep-th/0303194, Douglas; hep-th/0307049, Ashok-Douglas; hep-th/0409207, Douglas; 1511.03209, Taylor-Wang; 1706.02299, Halverson-Long-Sun; 1710.11235, Taylor-Wang; 1810.00444, Constantin-He-Lukas]

Challenges

- huge number of possibilities
- difficult math problems (NP-complete, NP-hard, undecidable) [hep-th/0602072, Denef-Douglas; 1009.5386, Cvetič-Garćá-EtxebarriaHalverson; 1809.08279, Halverson-Ruehle; 1911.07835, Halverson-Plesser-Ruehle-Tian]
- methods from algebraic topology: cumbersome, rarely closed-form formulas [Lukas' talk, 07/2020, 20-22']

Challenges

- huge number of possibilities
- difficult math problems (NP-complete, NP-hard, undecidable) [hep-th/0602072, Denef-Douglas; 1009.5386, Cvetič-García-EtxebarriaHalverson; 1809.08279, Halverson-Ruehle; 1911.07835, Halverson-Plesser-Ruehle-Tian]
- methods from algebraic topology: cumbersome, rarely closed-form formulas [Lukas' talk, 07/2020, 20-22']
\rightarrow use machine learning
Selected references: 1404.7359, Abel-Rizos; 1706.02714, He; 1706.03346, Krefl-Song; 1706.07024, Ruehle; 1707.00655, Carifio-Halverson-KrioukovNelson; 1804.07296, Wang-Zang; 1806.03121, Bull-He-Jejjala-Mishra; ...

Review: Ruehle '20

Plan

Goal

Compute Hodge numbers for CICY 3 -folds

1. introduction to machine learning
2. complete intersection Calabi-Yau (CICY)
3. data analysis for CICY
4. machine learning for CICY

References: [HE-Finotello, 2007.13379, 2007.15706]

Outline: 2. Machine learning

Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

Machine learning analysis

Conclusion

Definition

Machine learning (Samuel)

The field of study that gives computers the ability to learn without being explicitly programmed.

Machine learning (Mitchell)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

References:

- Chollet - Deep Learning with Python (2018)
- Géron - Hands-On Machine Learning (2019)
- Zhang et al. - Dive Into Deep Learning (2020), d21.ai

Approaches to machine learning

Learning approaches (task: $x \longrightarrow y$):

- supervised: learn a map from a set or pairs $\left(x_{\text {train }}, y_{\text {train }}\right)$, then predict $y_{\text {data }}$ from $x_{\text {data }}$
- unsupervised: give $x_{\text {data }}$ and let the machine find structure (i.e. appropriate $y_{\text {data }}$)
- reinforcement: give $x_{\text {data }}$, let the machine choose output $y_{\text {data }}$ following some rules, reward good and/or punish bad results, iterate

Applications

General idea $=$ pattern recognition:

- classification / clustering
- regression (prediction)
- transcription / translation
- structuring
- anomaly detection
- denoising
- synthesis and sampling
- density estimation
- conjecture generation

Applications in industry: computer vision, language processing, medical diagnosis, fraud detection, recommendation system, autonomous driving...

Examples

Multimedia applications:

- MuZero, AlphaZero (DeepMind): play chess, shogi, Go
- MuZero, AlphaStar (Deepmind), OpenAI Five, etc.: play video games (Starcraft 2, Dota 2, Atari...)
- Gpt-2 (OpenAI): conditional synthetic text sampling (+ general language tasks)
- DeepL: translation
- Yolo: real-time object detection [1804.02767]
- Face2Face: real-time face reenactement (deep fake)

Science applications:

- AlphaFold (DeepMind): protein folding
- (astro)particles [1806.11484, 1807.02876, darkmachines.org]
- astronomy [1904.07248]
- geometrical structures [geometricdeeplearning.com]

Fully connected neural network

$$
\begin{aligned}
x_{i 0}^{(0)} & :=x_{i_{0}} \\
x_{i_{1}}^{(1)} & =g^{(1)}\left(W_{i i_{10}}^{(1)} x_{i 0}^{(0)}\right) \\
f_{i_{2}}\left(x_{i_{0}}\right):=x_{i_{2}}^{(2)} & =g^{(2)}\left(W_{i i_{1}}^{(2)} x_{i_{1}}^{(1)}\right) \\
i_{0}=1,2,3 ; i_{1} & =1, \ldots, 4 ; i_{2}=1,2
\end{aligned}
$$

Fully connected neural network

Architecture:

- $N \geq 1$ hidden layers, vector $x^{(n)}$
- link: weighted input \rightarrow weight matrix $W^{(n)}$
- neuron: non-linear, element-wise
activation function $g^{(n)}$

$$
x^{(n+1)}=g^{(n+1)}\left(W^{(n)} x^{(n)}\right)
$$

Training

Method:

1. fix architecture (number of layers, activation functions...)
2. learn weights $W^{(n)}$ from gradient descent

Gradient descent:

- loss function L : overall error to be decreased

$$
L=\sum_{i=1}^{N_{\text {train }}} \operatorname{distance}\left(y_{i}^{(\text {train })}, y_{i}^{(\mathrm{pred})}\right)
$$

common choices: mean absolute error, mean squared error...

- optimizer and its parameters (learning rate, momentum...)
- ℓ_{1} and ℓ_{2} weight regularization (penalize high and redundant weights)
- training protocol: early stopping, learning rate decay. . .

Training cycle

- hyperparameter tuning
- adapt architecture and optimization for better results
- search methods: trial-and-error, grid, random, Bayesian, genetic. .
- main risk: overfitting (= cannot generalize to new data)

1. split data in training, validation and test sets
2. train several models on the training set
3. compare performances on validation set
4. evaluate performance of the
 best model on test set

- consider n models in parallel (bagging) to get statistics

Neural network components (1)

- convolutional layer: move window over data, combining values with a kernel (to be learned)
\rightarrow translation covariance, locality, weight sharing

Input		Kernel		Output				
0	1	2						
3	4	5						
6	7	8				$*$	0	1
:---	:---							
2	3							
19	25							
37	43							

- recurrent layer (LSTM, GRU): keep memory of past information in a sequence
\rightarrow temporal processing

Neural network components (2)

- pooling layer: coarse-graining
\rightarrow reduce internal data size, translation/rotation/scale invariances

Input		
0	1	2
3	4	5
6	7	8

Output

4	5
7	8

- dropout layer: deactivate neurons randomly with probability p \rightarrow improve generalization, regularization

- batch normalization layer: normalize data, then scale and shift (learnable parameters)
\rightarrow keep stable internal data, regularization

ML workflow

"Naive" workflow:

1. get raw data
2. write neural network with many layers
3. feed raw data to neural network
4. get nice results (or give up)

xkcd.com/1838

ML workflow

Real-world workflow:

1. understand the problem
2. exploratory data analysis

- feature engineering
- feature selection

3. baseline model

- full working pipeline
- lower-bound on accuracy

4. validation strategy
5. machine learning model(s)
6. ensembling

Pragmatic ref.: coursera.org/learn/competitive-data-science

Advanced neural network

Advanced neural network

Particularities:

- $f_{i}(I)$: engineered features
- identical outputs (stabilisation)

Why neural networks?

Universal approximation theorem

Under mild assumptions, a feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of \mathbb{R}^{n}.

Why neural networks?

Universal approximation theorem

Under mild assumptions, a feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of \mathbb{R}^{n}.

Comparisons

- results comparable and sometimes superior to human experts (cancer diagnosis, traffic sign recognition...)
- perform generically better than any other machine learning algorithm

Why neural networks?

Universal approximation theorem

Under mild assumptions, a feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of \mathbb{R}^{n}.

Comparisons

- results comparable and sometimes superior to human experts (cancer diagnosis, traffic sign recognition...)
- perform generically better than any other machine learning algorithm

Drawbacks

- black box
- magic
- numerical
(= how to extract analytical / predictable / exact results?)

Outline: 3. Calabi-Yau 3-folds

Motivations
Machine learning
Calabi-Yau 3-folds
Data analysis
Machine learning analysis

Conclusion

Calabi-Yau

Complete intersection Calabi-Yau (CICY) 3-fold:

- CY: complex manifold with vanishing first Chern class
- complete intersection: non-degenerate hypersurface in products of m projective spaces
- hypersurface $=$ solution to system of k homogeneous polynomial equations

Calabi-Yau

Complete intersection Calabi-Yau (CICY) 3-fold:

- CY: complex manifold with vanishing first Chern class
- complete intersection: non-degenerate hypersurface in products of m projective spaces
- hypersurface $=$ solution to system of k homogeneous polynomial equations
- described by configuration matrix $m \times k$

$$
\begin{gathered}
X=\left[\begin{array}{c|ccc}
\mathbb{P}^{n_{1}} & a_{1}^{1} & \cdots & a_{k}^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{P}^{n_{m}} & a_{1}^{m} & \cdots & a_{k}^{m}
\end{array}\right], \quad a_{\alpha}^{r} \in \mathbb{N} \\
\operatorname{dim}_{\mathbb{C}} X=\sum_{r=1}^{m} n_{r}-k=3, \quad n_{r}+1=\sum_{\alpha=1}^{k} a_{\alpha}^{r}
\end{gathered}
$$

- a_{α}^{r} power of coordinates on $\mathbb{P}^{n_{r}}$ in α th equation

Configuration matrix

Examples

- quintic $(a=0, \ldots, 4)$

$$
\left[\mathbb{P}_{x}^{4} \mid 5\right] \Longrightarrow \sum_{a}\left(X^{a}\right)^{5}=0
$$

- 2 projective spaces, 3 equations $(a, \alpha=0, \ldots, 3)$

$$
\left[\begin{array}{l|lll}
\mathbb{P}_{X}^{3} & 3 & 0 & 1 \\
\mathbb{P}_{y}^{3} & 0 & 3 & 1
\end{array}\right] \Longrightarrow\left\{\begin{array}{l}
f_{a b c} X^{a} X^{b} X^{c}=0 \\
g_{\alpha \beta \gamma} Y^{\alpha} Y^{\beta} Y^{\gamma}=0 \\
h_{a \alpha} X^{a} Y^{\alpha}=0
\end{array}\right.
$$

Configuration matrix

Examples

- quintic $(a=0, \ldots, 4)$

$$
\left[\mathbb{P}_{x}^{4} \mid 5\right] \Longrightarrow \sum_{a}\left(X^{a}\right)^{5}=0
$$

- 2 projective spaces, 3 equations $(a, \alpha=0, \ldots, 3)$

$$
\left[\begin{array}{l|lll}
\mathbb{P}_{X}^{3} & 3 & 0 & 1 \\
\mathbb{P}_{y}^{3} & 0 & 3 & 1
\end{array}\right] \Longrightarrow\left\{\begin{array}{l}
f_{a b c} X^{a} X^{b} X^{c}=0 \\
g_{\alpha \beta \gamma} Y^{\alpha} Y^{\beta} Y^{\gamma}=0 \\
h_{a \alpha} X^{a} Y^{\alpha}=0
\end{array}\right.
$$

Classification

- invariances \rightarrow topologically equivalent manifolds, redundancy
- permutation of lines and columns
- identities between subspaces
- but:
- constraints \Rightarrow bound on matrix size
- often \exists "favorable" configuration (simplest description)

Topology

Why topology?

- no metric known for compact CY (cannot perform KK reduction explicitly) [but see: 2012.04656, Anderson-Gerdes-Gray-Krippendorf-Raghuram-Ruehle]
- topological info. \rightarrow properties of 4d low-energy effective action (number of fields, representations, gauge symmetry...)

Topology

Why topology?

- no metric known for compact CY (cannot perform KK reduction explicitly) [but see: 2012.04656, Anderson-Gerdes-Gray-Krippendorf-Raghuram-Ruehle]
- topological info. \rightarrow properties of 4d low-energy effective action (number of fields, representations, gauge symmetry...)

Topological properties

- Hodge numbers $h^{p, q}$ (number of harmonic (p, q)-forms) here: $h^{1,1}, h^{2,1}$
- Euler number $\chi=2\left(h^{1,1}-h^{2,1}\right)$
- Chern classes
- triple intersection numbers
- line bundle cohomologies

Topology

Why topology?

- no metric known for compact CY (cannot perform KK reduction explicitly) [but see: 2012.04656, Anderson-Gerdes-Gray-Krippendorf-Raghuram-Ruehle]
- topological info. \rightarrow properties of 4d low-energy effective action (number of fields, representations, gauge symmetry. . .)

Topological properties

- Hodge numbers $h^{p, q}$ (number of harmonic (p, q)-forms) here: $h^{1,1}, h^{2,1}$
- Euler number $\chi=2\left(h^{1,1}-h^{2,1}\right)$
- Chern classes
- triple intersection numbers
- line bundle cohomologies

Datasets

CICY have been classified

- 7890 configurations (but \exists redundancies)
- number of product spaces: 22
- $h^{1,1} \in[0,19], h^{2,1} \in[0,101]$
- 266 combinations $\left(h^{1,1}, h^{2,1}\right)$
- $a_{\alpha}^{r} \in[0,5]$

Original data [Candelas-Dale-Lutken-Schimmrigk '88; Green-Hübsch-Lutken '89]:

- maximal matrix size: 12×15
- number of favorable matrices: 4874

Favorable data [1708.07907, Anderson-Gao-Gray-Lee]:

- maximal matrix size: 15×18
- number of favorable matrices: 7820

Data

Sizes
. 1 - $10 \bigcirc 100 \bigcirc 500$

Goal and methodology

Philosophy

Start with the dataset, derive everything from configuration matrix using data analysis and machine learning only.

Current goal

Input: configuration matrix \longrightarrow Outputs: $h^{1,1}, h^{2,1}$

Motivations:

1. CICY: well studied, all topological quantities known
\rightarrow use as a sandbox
2. perform complete data analysis
3. improve over [1706.02714, He; 1806.03121, Bull-He-Jejjala-Mishra]
4. $h^{2,1}$ and favorable dataset not studied before

References: [HE-Finotello, 2007.13379, 2007.15706]

Outline: 4. Data analysis

Motivations
Machine learning
Calabi-Yau 3-folds

Data analysis

Machine learning analysis

Conclusion

Feature engineering

Process of creating new features derived from the raw input data.

Some examples:

- number of projective spaces (rows), $m=$ num_cp
- number of equations (columns), k
- number of $\mathbb{C} P^{1}$
- number of $\mathbb{C} P^{2}$
- number of $\mathbb{C} P^{n}$ with $n \neq 1$
- Frobenius norm of the matrix
- list of the projective space dimensions and statistics thereof
- dimensions of ambient space cohomology $\left\{\prod_{r=1}^{m}\binom{n_{r}+a_{\alpha}^{r}}{n_{r}}\right\}$
- K-nearest neighbour (KNN) clustering (with $K=2, \ldots, 5$)

Feature selection

Select the most important features to draw attention of the ML algorithm to salient features in order to ease the learning.

Discovery methods:

- correlation matrix
- importance from random forests
- scatter plots
- trial and error
- etc.

Correlation matrix

Original

Correlation Matrix of the Scalar Features

Favorable

Feature importance from random forests

Random forest

Large number of decision trees trained on different subsets. The most relevant features appear at the top of the trees.

Original

Favorable

Scatter plots

Original

Favorable

Outline: 5. Machine learning analysis

```
Motivations
Machine learning
Calabi-Yau 3-folds
Data analysis
```

Machine learning analysis

Conclusion

Strategy

Questions:

- classification or regression?
- feature engineering?
- data diminution: remove outliers (39 matrices, 0.49\%)?
- data augmentation: generate more inputs using invariances?
- single- or multi-tasking?

Strategy

Questions:

- classification or regression?
- classification: assume knowledge of boundaries (in practice, performs less well)
- regression: better for generalization different scales \rightarrow normalize data \approx use continuous variable (in practice, not needed)
- feature engineering?
\rightarrow helps only for non-neural network algorithms
\rightarrow data diminution: remove outliers (39 matrices, 0.49\%)?
\rightarrow remove outliers from training set
- data augmentation: generate more inputs using invariances?
\rightarrow adding row/column permutations decreases performance
- single- or multi-tasking?
\rightarrow multi-tasking slightly decreases performance

Setup

Algorithms:

- linear regression
- linear-kernel SVM
- Gaussian-kernel SVM
- random forests
- gradient boosted trees
- neural networks

Evaluation:

- train/validation/test splits: 80/10/10 and 30/10/60
- optimization using MSE
- final evaluation with accuracy after rounding

Setup

Algorithms:

- linear regression
- linear-kernel SVM
- Gaussian-kernel SVM
- random forests
- gradient boosted trees
- neural networks

Evaluation:

- train/validation/test splits: 80/10/10 and 30/10/60
- optimization using MSE
- final evaluation with accuracy after rounding

Preliminary observations:

- all algo. give 99% for $h^{1,1}$ in favorable dataset with engineered features (without engineering: 90-95 \% for standard algo.)
- $h^{2,1}$ equivalently hard in both sets
\rightarrow focus on original dataset

Results: simple algorithms

Matrix

Results: simple algorithms

Matrix

Matrix + engineered features

Convolutional neural network

Architecture and training:

- 4 convolutional layers, kernel 5×5 :
- $h^{1,1}: 180,100,40,20$ units
- $h^{2,1}: 250,150,100,50$ units
- after each layer: batch normalization, ReLU activation
- at the end: dropout $p=0.2, \operatorname{ReLU}$ (enforces positive output)
- early stopping \& learning rate decay primordial to increase accuracy beyond 90%
- number of parameters:
- $h^{1,1}: 5.8 \times 10^{5}$
- $h^{2,1}: 2.1 \times 10^{6}$

Inception neural network (1)

- designed by Google for computer vision \rightarrow breakthrough in image classification [Szegedy et al., 1409.4842, 1512.00567, 1602.07261]
- sequence of inception modules
\rightarrow parallel convolutions with kernels of \neq sizes
- learns different combinations of features at different scales
- 3 inception modules, kernels $(12 \times 1,1 \times 15)$:
- $h^{1,1}: 32,64,32$ units
- $h^{2,1}: 128,128,64$ units
- numbers of parameters:
- $h^{1,1}: 2.3 \times 10^{5}, 7 \times$ less than [1806.03121, Bull-He-Jejjala-Mishra]
- $h^{2,1}: 1.1 \times 10^{6}$

Inception neural network (2)

Results

Learning curve and errors

Why do convolutional / Inception networks work?

- matrix not invariant under rotation/translation, but conv. layers encodes only translation equivariance (pooling and data augmentation induces invariance under rotation and invariance) [Goodfellow-Bengio-Courville '16]
- 1d parallel kernels of maximal sizes: look at all $\mathbb{C} P^{n}$ /equations for each equation $/ \mathbb{C} P^{n}$ at the same time
- weight sharing (convolution): same operations for each $\mathbb{C} P^{n}$ and equation since they all enter symmetrically (expected for a math formula)

Why do convolutional / Inception networks work?

- matrix not invariant under rotation/translation, but conv. layers encodes only translation equivariance (pooling and data augmentation induces invariance under rotation and invariance) [Goodfellow-Bengio-Courville '16]
- 1d parallel kernels of maximal sizes: look at all $\mathbb{C} P^{n}$ /equations for each equation $/ \mathbb{C} P^{n}$ at the same time
- weight sharing (convolution): same operations for each $\mathbb{C} P^{n}$ and equation since they all enter symmetrically (expected for a math formula)

Next: focus on $h^{1,1}$

Comparing architectures

He: 1706.02714; Bull et al.: 1806.03121; percentage: training data

Ablation study

Outline: 6. Conclusion

Motivations
Machine learning
Calabi-Yau 3-folds
Data analysis
Machine learning analysis

Conclusion

Conclusion

Results:

- rigorous data analysis for the computation of Hodge numbers for CICY 3-folds
- almost perfect accuracy for predicting $h^{1,1}$
- accuracy of 50% for $h^{2,1}$

Outlook:

- improve accuracy for $h^{2,1}$

1. use engineered data as auxiliary inputs to the Inception network
2. use another data representation (e.g. graph [Hübsch '92; 2003.13679, Krippendorf-Syvaeri], learned from variational autoencoder...)

- dissect neural network data to understand what it learns
- extension to CICY 4-folds

