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Machine learning

Machine Learning (ML)
Set of techniques for pattern recognition / function approximation
without explicit programming.

I learn to perform a task implicitly by optimizing a cost function
I flexible → wide range of applications
I general theory unknown (black box problem)

Question
Where does it fit in theoretical physics?

→ particle physics, cosmology, many-body physics, quantum
information, lattice simulations, string vacua. . .
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Lattice QFT
Ideas:
I discretization of action and path integral
I Monte Carlo (MC) algorithms

Applications:
I access non-perturbative effects, strong-coupling regime
I study phase transitions
I QCD phenomenology (confinement, quark-gluon plasma. . . )
I Regge / CDT approaches to quantum gravity
I supersymmetric gauge theories for AdS/CFT

Limitations:
I computationally expensive
I convergence only for some regions of the parameter space

→ use machine learning
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Machine learning for Monte Carlo
Support MC with ML [1605.01735, Carrasquilla-Melko]:
I compute useful quantities, predict phase
I learn field distribution
I identify important (order) parameters
I generalize to other regions of parameter space
I reduce autocorrelation times
I avoid fermion sign problem

Selected references:
1608.07848, Broecker et al.; 1703.02435, Wetzel; 1705.05582,
Wetzel-Scherzer; 1805.11058, Abe et al.; 1801.05784,
Shanahan-Trewartha-Detmold; 1807.05971, Yoon-Bhattacharya-Gupta;
1810.12879, Zhou-Endrõdi-Pang; 1811.03533, Urban-Pawlowski;
1904.12072, Albergo-Kanwar-Shanahan; 1909.06238,
Matsumoto-Kitazawa-Kohno

5 / 49

http://arxiv.org/abs/1605.01735
http://arxiv.org/abs/1608.07848
http://arxiv.org/abs/1703.02435
http://arxiv.org/abs/1705.05582
http://arxiv.org/abs/1705.05582
http://arxiv.org/abs/1805.11058
http://arxiv.org/abs/1801.05784
http://arxiv.org/abs/1801.05784
http://arxiv.org/abs/1807.05971
http://arxiv.org/abs/1810.12879
http://arxiv.org/abs/1811.03533
http://arxiv.org/abs/1904.12072
http://arxiv.org/abs/1909.06238
http://arxiv.org/abs/1909.06238


Plan

1. Casimir energy for arbitrary boundaries for a 3d scalar field
→ speed improvement and accuracy

2. deconfinement phase transition in 3d compact QED
→ extrapolation to different lattice sizes
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Definition

Machine learning (Samuel)
The field of study that gives computers the ability to learn without
being explicitly programmed.

Machine learning (Mitchell)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its
performance at tasks in T , as measured by P, improves with
experience E .
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Approaches to machine learning

Learning approaches (task: x −→ y):
I supervised: learn a map from a set (xtrain, ytrain), then predict

ydata from xdata
I unsupervised: give xdata and let the machine find structure

(i.e. appropriate ydata)
I reinforcement: give xdata, let the machine choose output

following rules, reward good and/or punish bad results, iterate
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Applications
General idea = pattern recognition:
I classification / clustering
I regression (prediction)
I transcription / translation
I structuring
I anomaly detection
I denoising
I synthesis and sampling
I density estimation
I conjecture generation

Applications in industry: computer vision, language processing,
medical diagnosis, fraud detection, recommendation system,
autonomous driving. . .
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Examples
Media applications:
I MuZero, AlphaZero (DeepMind): play chess, shogi, Go
I MuZero, AlphaStar (Deepmind), OpenAI Five, etc.: play

video games (Starcraft 2, Dota 2, Atari. . . )
I Gpt-2 (OpenAI): conditional synthetic text sampling

(+ question answering, reading comprehension,
summarization, translation)

I Yolo: real-time object detection [1804.02767]
I Face2Face: real-time face reenactement
I cyclic GAN: image generation and translation

Science applications:
I AlphaFold (DeepMind): protein folding
I (astro)particles [1806.11484, 1807.02876, darkmachines.org]
I astronomy [1904.07248]
I geometrical structures [geometricdeeplearning.com]
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Examples (AlphaZero)

Some facts: [Silver et al. ’18]
I AlphaGo (supervised): 4–1 against human champion (03/2016)
I AlphaGo Zero (reinforcement): 100–0 against AlphaGo (04/2017)
I positions/s: Stockfish = 5.8× 107, AlphaZero = 6× 104

I training time: 9h (chess), 12 hours (shogi), 13 days (Go)
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Examples (GPT)
Human entry:

A train carriage containing controlled nuclear materials was
stolen in Cincinnati today. Its whereabouts are unknown.

Machine answer:
The incident occurred on the downtown train line, which

runs from Covington and Ashland stations.
In an email to Ohio news outlets, the U.S. Department of

Energy said it is working with the Federal Railroad Administra-
tion to find the thief.

“The theft of this nuclear material will have significant neg-
ative consequences on public and environmental health, our
workforce and the economy of our nation,” said Tom Hicks,
the U.S. Energy Secretary, in a statement. “Our top priority is
to secure the theft and ensure it doesn’t happen again.”

The stolen material was taken from the University of Cin-
cinnati’s Research Triangle Park nuclear research site, according
to a news release from Department officials. (. . . )

[https://openai.com/blog/better-language-models]
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Examples (videos)

I Yolo [https://www.youtube.com/watch?v=VOC3huqHrss]
I Deepfake [https://www.youtube.com/watch?v=ohmajJTcpNk]
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Examples (cycle GAN)

Zebras Horses

horse        zebra

zebra        horse

Summer Winter

summer        winter

winter        summer

Photograph Van Gogh CezanneMonet Ukiyo-e

Monet        Photos

Monet        photo

photo       Monet

[1703.10593]
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http://arxiv.org/abs/1703.10593


Examples (protein)

[https://deepmind.com/blog/article/alphafold]
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Deep neural network

Architecture:
I 1–many hidden layers,

vector x (n)

I link: weighted input,
matrix W (n)

I neuron: non-linear
“activation function” g (n)

x (n+1) = g (n+1)(W (n)x (n))

Generic method: fixed functions g (n), learn weights W (n)
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Deep neural network

x (1)
i1 := xi1

x (2)
i2 = g (2)(W (1)

i2i1 x
(1)
i1
)

fi3(xi1) := x (3)
i3 = g (3)(W (2)

i3i2 x
(2)
i2
)

i1 = 1, 2, 3; i2 = 1, . . . , 4; i3 = 1, 2

Generic method: fixed functions g (n), learn weights W (n)

17 / 49



Learning method
I define a loss function L

L =
Ntrain∑
i=1

distance
(
y (train)

i , y (pred)
i

)
I minimize the loss function (iterated gradient descent. . . )

I main risk: overfitting (= cannot generalize)
→ various solutions (regularization, dropout. . . )
→ split data set in two (training and test)
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ML workflow

“Naive” workflow:
1. get raw data
2. write neural network with

many layers
3. feed raw data to neural

network
4. get nice results

(or give up)

https://xkcd.com/1838
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ML workflow

Real-world workflow:
1. understand the problem
2. exploratory data analysis

I feature engineering
I feature selection

3. baseline model
I full working pipeline
I lower-bound on accuracy

4. validation strategy
5. machine learning model
6. ensembling

Pragmatic ref.: [coursera.org/learn/competitive-data-science]
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Complex neural network

Particularities:
I fi (I) : engineered features
I identical outputs (stabilisation)
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Some results

Universal approximation theorem
Under mild assumptions, a feed-forward network with a single
hidden layer containing a finite number of neurons can
approximate continuous functions on compact subsets of Rn.

Comparisons
I results comparable and sometimes superior to human experts

(cancer diagnosis, traffic sign recognition. . . )
I perform generically better than any other machine learning

algorithm

Drawbacks
I black box I magic I numerical

(= how to extract analytical / predictable / exact results?)
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Discretization
I Euclidean periodic lattice Λ, spacing a

xµ/a ∈ Λ = {0, . . . , Lt − 1} × {0, . . . , Ls − 1}d−1

I scalar field ∈ site: φ(x) −→ φx
I gauge field → phase factor ∈ link l = (x , µ)

Uµ(x) = P exp
(

i
∫ x+µ̂

x
dx ′ν Aν

)
→ Ux ,µ = eiaAµ+O(a2)

I field strength → phase factor ∈ plaquette P = (x , µ, ν)

Uµν(x) = Uν(x)†Uµ(x + ν̂)†Uν(x + µ̂)Uµ(x)

→ Ux ,µν = eia2Fµν+O(a3)

a

L_t = 5

L
_s

 =
 3 x(2,1)

x x+μ

l
x x+μ

P

x+ν x+μ+ν
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Monte Carlo methods
I interpret path integral → statistical system partition function∫ ∏

x
dφx −→

∑
C

and 〈O[C ]〉 =
∑

C e−βS[C ]O[C ]∑
C e−βS[C ]

C = {φx}x∈Λ field configuration
I Monte Carlo: sample susbset E = {C1, . . . ,CN} s.t.

Prob(Ck) = Z−1 e−βS[Ck ], 〈O〉 = 1
N

N∑
k=1
O[Ck ]

I Markov chain: built E by sequence of state
stochastic transition Prob(Ck → Ck+1) = Prob(Ck ,Ck+1)

I Metropolis algorithm: select trial configuration C ′, accept
Ck+1 = C ′ with probability given by action difference

Prob(Ck → C ′) = min
(
1, e−β(S[C ′]−S[Ck ])

)
Prob(Ck → Ck) = 1− Prob(Ck → C ′)
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Scalar field theory
I partition function and action (µ = 0, 1, 2)

Z =
∫

dφ e−S[φ], S[φ] = 1
2

∫
d3x ∂µφ∂µφ

I Dirichlet boundary condition

φ(x)|x∈S = 0

I Euclidean energy

T00 = 1
2

[
−
(
∂φ

∂x0

)2
+
(
∂φ

∂x1

)2
+
(
∂φ

∂x2

)2]
I Casimir energy

ES = 〈T00〉S − 〈T00〉0
= change in vacuum energy density due to boundaries

I modify QCD vacuum → chiral symmetry breaking /
confinement [1805.11887, Chernodub et al.]
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Discretization

I partition function and action

Z =
∫ ∏

x
dφx e−S[φ], S[φ] = 1

2
∑
x ,µ

(φx+µ̂ − φx )2

µ̂ unit vector in direction µ
I Euclidean energy

T00 = 1
4
∑
µ

ηµ
[
(φx+µ̂ − φx )2 + (φx − φx−µ̂)2]

(η0, η1, η2) = (−1, 1, 1)
I Hybrid Monte Carlo algorithm (MC + molecular dynamics)
I boundaries: parallel lines or closed curves

27 / 49



ML analysis

I input: 2d boundary condition
(= BW image), Ls = 255

I output: Casimir energy ∈ R
I network: 4 convolution layers, 390k

parameters
I data: 80% train, 10% validate,

10% test
I time comparison:

I training = 5 min / 800 samples
I prediction = 5 ms / 100 samples
I MC: 3.1 hours / sample

28 / 49



Examples
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id 136:    error = 0.000596
true = -13.5286,   pred = -13.5205
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true = -1.54119,   pred = -3.37649
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id 98:    error = 0.042850
true = -37.6339,   pred = -36.0213
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Predictions
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Training and learning curves

Training curve
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Epochs
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ss
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validation

Learning curve
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Relative errors and RMSE

errors (relative) closed curves parallel lines
mean 0.064 0.0037
min 0.000087 0.000019
75% 0.069 0.0051
max 2.1 0.016
RMSE 0.97 0.18

rel. error =
∣∣∣∣ML−MC

MC

∣∣∣∣
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Comparison MC and ML

Best and worst in terms of absolute error (closed curves):

MC ML
E errE E errE

be
st

-22.62 0.13 -22.60 0.014
-20.34 0.12 -20.34 0.0018
-12.22 0.09 -12.23 0.011
-9.57 0.16 -9.57 0.0028
-9.57 0.13 -9.56 0.011

wo
rs
t -0.82 0.12 -2.54 1.72

-1.63 0.10 -2.67 1.04
-1.48 0.09 -2.30 0.82
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Compact QED: properties

Model: compact QED in d = 2 + 1 at finite temperature
I well understood [hep-lat/0106021, Chernodub-Ilgenfritz-Schiller]
I good toy model for QCD (linear confinement, mass gap

generation, temperature phase transition)
I topological defects (monopoles): drive phase transition

Confinement-deconfinement phase transition:
I low temperature: confinement caused by Coulomb

monopole-antimonopole gas
I high temperature: deconfinement, rare monopoles bound into

neutral monopole-antimonopole pairs
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Compact QED: lattice
I angle θx ,µ = a Aµ(x) ∈ [−π, π) lattice gauge field
I elementary plaquette angle

θPx,µν = θx ,µ + θx+µ̂,ν − θx+ν̂,µ − θx ,ν = a2Fx ,µν + O(a4)

I lattice action: continuum coupling g , temperature T

S[θ] = β
∑

x

∑
µ<ν

(
1− cos θPx,µν

)
, β = 1

ag2 = LtT
g2

I Polyakov loop → order parameter for confinement

L(x) = e
i

Lt−1∑
t=0

θ0(t,x)
, 〈L(R)〉 = e−F/T

infinitely heavy charged test particle, free energy F
I confining potential (σ string tension)

〈L(0)L(R)〉 ∝ e−LtV (R), V (R) ∼T∼0 σ|R|

36 / 49



Monte Carlo computations

I MC simulations for different temperatures β:
1. gauge field configurations
2. monopole configurations
3. extract properties

I useful quantities:
I spatially averaged Polyakov loop L
I plaquettes U (spatial and temporal)
I monopole density ρ

I study phase transition from |L|:
I critical temperature βc
I phase φ = 0 (confined) or φ = 1 (deconfined)
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ML analysis
Objective:
1. train for (Lt , Ls) = (4, 16)
2. predict phase Prob(φ), Polyakov loop |L| for (Lt , Ls) 6= (4, 16)

(Lt = 4, 6, 8, Ls = 16, 32)
3. compute the critical temperature

Characteristics:
I input: 3d monopole configuration (= 3d BW image)
I main output: |L|, Prob(φ)
I auxiliary output: L, U, ρ, β
I network: convolution + dense layers, 1.28M parameters
I data:

I train 1: 2000 samples for each β ∈ [1.5, 3], ∆β = 0.05
I train 2: 100 samples for each β ∈ [0.1, 2.2], ∆β = 0.1
I validation/test: 200 samples for each β ∈ [1.5, 2.5], ∆β = 0.05
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Neural network
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Predictions (temperature, density)

(Lt , Ls) = (4, 16)
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Predictions (phase)
(Lt , Ls) = (4, 16), MC
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Predictions (errors)

RMSE
|L| 0.089
ρ 0.0027
β 0.19
U 0.016

φ score
accuracy 94.5%
precision 95.8%
recall 96.0%
F1 0.96

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
PL_mod

0

200

400

600

800

1000

1200

1400

Co
un

t

true
pred

0.00 0.02 0.04 0.06 0.08
MonDens

0

500

1000

1500

2000

Co
un

t

true
pred

42 / 49



Training and learning curves

Training curve
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Critical temperature: estimations

I maximum slope of Polyakov loop:

βc = argmax
β

∂β〈|L|〉β

I maximum probability variance:

βc = argmax
β

Varβ
(
p(φ)

)
I maximum probability uncertainty:

〈p(φ)〉β|βc = 0.5
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Critical temperature: predictions

Critical temperatures:

(Lt , Ls) (4, 16) (4, 32) (6, 16) (6, 32) (8, 16) (8, 32)
|L| slope 1.85 2.02 1.90 2.12 1.96 2.06
〈p(φ)〉 1.85 1.99 1.91 2.06 1.94 2.10

Var p(φ) 1.83 1.96 1.88 2.04 1.91 2.07
MC 1.81 1.93 1.98 2.14 2.10 2.29

Errors:

(Lt , Ls) (4, 16) (4, 32) (6, 16) (6, 32) (8, 16) (8, 32)
|L| slope 2.2% 4.7% 4.0% 1.6% 6.7% 10.1%
〈p(φ)〉 2.5% 3.1% 3.3% 3.7% 7.6% 8.5%

Var p(φ) 1.4% 1.8% 5.1% 4.9% 8.8% 9.6%
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Phase probability distribution
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Error correction
βc prediction could be improved to < 5% error:

I modify decision function

φ =
{
0 p(φ) < pc

1 p(φ) ≥ pc

tune pc , predict βc from
〈φ〉, Var φ

I error linear in Lt
→ apply correction 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Lt

0.02

0.04

0.06

0.08

0.10
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c (
re
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tiv

e 
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Ls = 32

Notes
I form of boosting/hyperparameter tuning using several lattices
I useful if considering many more lattices
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Outlooks

I Casimir effect
1. generate boundaries associated to given Casimir energy
2. compute local action → force on probe particle

I 3d QED
1. compute monopoles from gauge field configurations
2. extend to non-Abelian gauge theories

I applications to supersymmetric field theories
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