Non-perturbative renormalization for the neural network-QFT correspondence

Harold Erbin

Mit \& IAifi (Usa) \& Cea-List (France)

2021-2023

In collaboration with:

- Vincent Lahoche (Cea-List)
- Dine Ousmane Samary (Université d'Abomey-Calavi)
arXiv: 2108.01403

Outline: 1. Motivations

Motivations

NN-QFT correspondence

Renormalization group in NN-QFT

Conclusion

Talk highlights

- neural networks and uses in physics in a nutshell
- NN-QFT correspondence between:
- statistical ensemble of neural networks
- (Euclidean) quantum field theory
- describe the correspondence
- infinite-width neural network $=$ Gaussian process $=$ free QFT (i.e. infinite number of neurons)
- finite-width $=$ interactions
- data-space and theory space
- renormalization group
- numerical results
- goal: effective theory of learning
- improve efficiency
- improve architecture design

Why machine learning?

ML applications in theoretical physics [1903.10563, Carleo et al.]

- cosmology
- lattice theories
- many-body physics
- particle physics
- quantum information
- string theory

Why machine learning?

ML applications in theoretical physics [1903.10563, Carleo et al.]

- cosmology
- lattice theories
- many-body physics
- particle physics
- quantum information
- string theory

Typical problems

- big data: large-dimensional and noisy data to be related to theoretical models (particle colliders, gravitational waves, galaxy surveys. . .)
- exploration: landscape of possible models too large or not well understood (BSM phenomenology, NN-QFT...)
- computational: interaction structure prevents writing the model explicitly or making analytic computations (strong coupling, many-body physics...)

Why neural networks?

Universal approximation theorem

Under mild assumptions, a feed-forward network $f(x)$ with a finite number of neurons can approximate any continuous function $F(x)$ on compact subsets of \mathbb{R}^{n}.
[Cybenko '89; Hornik-Stinchcombe-White '89; 1709.02540, Lu et al.]

Why neural networks?

Universal approximation theorem

Under mild assumptions, a feed-forward network $f(x)$ with a finite number of neurons can approximate any continuous function $F(x)$ on compact subsets of \mathbb{R}^{n}.
[Cybenko '89; Hornik-Stinchcombe-White '89; 1709.02540, Lu et al.]

- neural network (NN) $f(x)=$ sequence of:
- matrix multiplication + translations (learnable parameters)
- element-wise non-linear functions (fixed)
- supervised learning: given a set of pairs $\left\{x_{a}, y_{a}=F\left(x_{a}\right)\right\}$, tune parameters with gradient descent such that $\forall a: f\left(x_{a}\right) \approx F\left(x_{a}\right)$
- motivations
- generically outperform all other machine learning algorithms
- can outperform human experts
- transfer learning (train for one task, apply to other tasks)

What is a neural network?

$$
\begin{gathered}
x_{i_{0}}^{(0)}:=x_{i_{0}} \\
x_{i_{1}}^{(1)}=g^{(1)}\left(W_{i_{1} i_{0}}^{(1)} x_{i_{0}}^{(0)}\right) \\
f_{i_{2}}\left(x_{i_{0}}\right):=x_{i_{2}}^{(2)}=g^{(2)}\left(W_{i_{2} i_{1}}^{(2)} x_{i_{1}}^{(1)}\right) \\
i_{0}=1,2,3 ; i_{1}=1, \ldots, 4 ; i_{2}=1,2 \\
K=1 ; d_{\text {in }}=3 ; N^{(1)}=4 ; \quad d_{\text {out }}=2
\end{gathered}
$$

- input $x^{(0)}:=x \in \mathbb{R}^{d_{\text {in }}}$
- $K \geq 1$ hidden layers, $n \in\{1, \ldots, K\}$
- layer n : $N^{(n)}$ neurons (units) $x^{(n)} \in \mathbb{R}^{N^{(n)}}$
- learnable weights $W^{(n)} \in \mathbb{R}^{N^{(n)} \times N^{(n-1)}}$
- learnable biases $b^{(n)} \in \mathbb{R}^{N^{(n)}}$ (not displayed)
- fixed activation functions $g^{(n)}$ (element-wise)
- output $x^{(K+1)}:=f(x) \in \mathbb{R}^{d_{\text {out }}}$

Problems with neural networks

- black box: hard to understand the meaning of computations
- loss landscape: loss function non-convex and very rough, hard to find (global) minimum (related to spin glass) [1412.0233, Choromanska et al.; 1712.09913, Li et al.]
- complicated training: expensive computationally, convergence issues. . .
[syncedreview.com/cost-of-training-sota-ai-models]
- hyperparameter tuning: mostly trial and errors or random/Bayesian/bandit optimization
- expressibility: which functions can be approximated, under which conditions?
[1606.05336, Raghu et al.]

Why physics?

- effective description (no need to know fundamental theory)
- efficient representation of statistical models (path integral, Feynman diagrams)
- collective dynamics of degrees of freedom and organization by scales (renormalization, phase transitions)
\rightarrow develop tools to improve analytical understanding of neural network building and training
[1608.08225, Lin-Tegmark-Rolnick; 1903.10563, Carleo et al.; Zdeborová '21]

Plan

NN-QFT correspondence

For a very general class of architectures, it is possible to associate a quantum field theory (QFT) to a statistical ensemble of neural networks (NN).
[2008.08601, Halverson-Maiti-Stoner (HMS)]

Plan

NN-QFT correspondence

For a very general class of architectures, it is possible to associate a quantum field theory (QFT) to a statistical ensemble of neural networks (NN).
[2008.08601, Halverson-Maiti-Stoner (HMS)]
In this talk [2108.01403, HE-Lahoche-Samary]:

- describe the NN-QFT correspondence
- discuss the theory space
- establish RG flow for the QFT
- provide numerical results

Main "experimental" result

Varying the standard deviation of the weight distribution induces an RG flow in the space of neural networks.

Outline: 2. NN-QFT correspondence

Motivations

NN-QFT correspondence

Renormalization group in NN-QFT

Conclusion

Neural network

- fully connected neural network (one hidden layer)

$$
\begin{gathered}
f_{\theta, N}: \mathbb{R}^{d_{\text {in }}} \rightarrow \mathbb{R}^{d_{\text {out }}} \\
f_{\theta, N}(x)=W_{1}\left(g\left(W_{0} x+b_{0}\right)\right)+b_{1}
\end{gathered}
$$

- width N, activation function g
- parameters (weights and biases): Gaussian distributions

$$
\begin{gathered}
\theta=\left(W_{0}, b_{0}, W_{1}, b_{1}\right) \\
W_{0} \sim \mathcal{N}\left(0, \sigma_{W}^{2} / d_{\text {in }}\right), \quad W_{1} \sim \mathcal{N}\left(0, \sigma_{W}^{2} / N\right) \\
b_{0}, b_{1} \sim \mathcal{N}\left(0, \sigma_{b}^{2}\right)
\end{gathered}
$$

Dual description

- consider statistical ensemble of neural networks defined by distribution in parameter space
- specific $\mathrm{NN}=$ sample from distribution

$$
f_{\theta, N} \sim P[\theta]
$$

Dual description

- consider statistical ensemble of neural networks defined by distribution in parameter space
- specific $\mathrm{NN}=$ sample from distribution

$$
f_{\theta, N} \sim P[\theta]
$$

- dual description: parameter dist. + architecture induces distribution in function space

$$
f_{\theta, N} \sim p[f]
$$

Dual description

- consider statistical ensemble of neural networks defined by distribution in parameter space
- specific $\mathrm{NN}=$ sample from distribution

$$
f_{\theta, N} \sim P[\theta]
$$

- dual description: parameter dist. + architecture induces distribution in function space

$$
f_{\theta, N} \sim p[f]
$$

- training $=$ change parameter dist. $=$ flow in function space

Note: no training in this talk

Large N limit, Gaussian process and free QFT

Large N limit = infinite layer width:

- NN (function) distribution drawn from Gaussian process (GP) with kernel K (consequence of central limit theorem) [Neal '96]

$$
f \sim \mathcal{N}(0, K)
$$

- generalize to most architectures [1910.12478, Yang] and training

Large N limit, Gaussian process and free QFT

Large N limit = infinite layer width:

- NN (function) distribution drawn from Gaussian process (GP) with kernel K (consequence of central limit theorem) [Neal '96]

$$
f \sim \mathcal{N}(0, K)
$$

- generalize to most architectures [1910.12478, Yang] and training
- log probability

$$
S_{0}[f]=\frac{1}{2} \int \mathrm{~d}^{d_{\mathrm{in}}} x \mathrm{~d}^{d_{\mathrm{in}}} x^{\prime} f(x) \equiv\left(x, x^{\prime}\right) f\left(x^{\prime}\right), \quad \equiv:=K^{-1}
$$

- n-point correlation (Green) functions (fixed by Wick theorem)

$$
G_{0}^{(n)}\left(x_{1}, \ldots, x_{n}\right):=\int \mathrm{d} f \mathrm{e}^{-S_{0}[f]} f\left(x_{1}\right) \cdots f\left(x_{n}\right)
$$

Large N limit, Gaussian process and free QFT

Large N limit = infinite layer width:

- NN (function) distribution drawn from Gaussian process (GP) with kernel K (consequence of central limit theorem) [Neal '96]

$$
f \sim \mathcal{N}(0, K)
$$

- generalize to most architectures [1910.12478, Yang] and training
- log probability

$$
S_{0}[f]=\frac{1}{2} \int \mathrm{~d}^{d_{\mathrm{in}}} x \mathrm{~d}^{d_{\mathrm{in}}} x^{\prime} f(x) \equiv\left(x, x^{\prime}\right) f\left(x^{\prime}\right), \quad \equiv:=K^{-1}
$$

- n-point correlation (Green) functions (fixed by Wick theorem)

$$
G_{0}^{(n)}\left(x_{1}, \ldots, x_{n}\right):=\int \mathrm{d} f \mathrm{e}^{-S_{0}[f]} f\left(x_{1}\right) \cdots f\left(x_{n}\right)
$$

"If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck."

Large N limit, Gaussian process and free QFT

Large N limit = infinite layer width:

- NN (function) distribution drawn from Gaussian process (GP) with kernel K (consequence of central limit theorem) [Neal '96]

$$
f \sim \mathcal{N}(0, K)
$$

- generalize to most architectures [1910.12478, Yang] and training
- log probability

$$
S_{0}[f]=\frac{1}{2} \int \mathrm{~d}^{d_{\mathrm{in}}} x \mathrm{~d}^{d_{\mathrm{in}}} x^{\prime} f(x) \equiv\left(x, x^{\prime}\right) f\left(x^{\prime}\right), \quad \equiv:=K^{-1}
$$

- n-point correlation (Green) functions (fixed by Wick theorem)

$$
G_{0}^{(n)}\left(x_{1}, \ldots, x_{n}\right):=\int \mathrm{d} f \mathrm{e}^{-S_{0}[f]} f\left(x_{1}\right) \cdots f\left(x_{n}\right)
$$

This looks like a free QFT.

Finite N and interactions

- for finite N, non-GP \Rightarrow deviations of Green functions

$$
\Delta G^{(n)}:=G^{(n)}-G_{0}^{(n)}
$$

Finite N and interactions

- for finite N, non-GP \Rightarrow deviations of Green functions

$$
\Delta G^{(n)}:=G^{(n)}-G_{0}^{(n)}
$$

- in QFT: non-Gaussian contributions $=$ interactions

$$
S[f]=S_{0}^{\prime}[f]+S_{\text {int }}[f]
$$

note: free action $S_{0}^{\prime}[f]$ unknown

Finite N and interactions

- for finite N, non-GP \Rightarrow deviations of Green functions

$$
\Delta G^{(n)}:=G^{(n)}-G_{0}^{(n)}
$$

- in QFT: non-Gaussian contributions $=$ interactions

$$
S[f]=S_{0}^{\prime}[f]+S_{\text {int }}[f]
$$

note: free action $S_{0}^{\prime}[f]$ unknown

- n-point Green functions

$$
G^{(n)}\left(x_{1}, \ldots, x_{n}\right):=\int \mathrm{d} f \mathrm{e}^{-S[f]} f\left(x_{1}\right) \cdots f\left(x_{n}\right)
$$

- effective (IR) 2-point function exactly known ($G^{(2)} N$-indep.)

$$
G^{(2)}(x, y)=K(x, y)=G_{0}^{(2)}(x, y)
$$

- work with 1 PI effective action

$$
\Gamma[f]=S_{0}[f]+\Gamma_{\text {int }}[f]
$$

Summary of NN-QFT correspondence

	QFT	NN / GP
x	spacetime points	data-space inputs
p	momentum space	dual data-space
f	field	neural network
$K(x, y)$	propagator	Gaussian kernel
S	action	log probability
S_{0}	free action	Gaussian log probability
$S_{\text {int }}$	interactions	non-Gaussian corrections

Why is it interesting?

- correlation functions between outputs (= Green functions) give measure of learning
- e.g. 1-point function $\langle f(x)\rangle=$ average prediction for input x (relation with symmetry breaking)

Theory space

- data-space \neq spacetime \rightarrow avoid bias from particle physics

Theory space

- data-space \neq spacetime \rightarrow avoid bias from particle physics
- spacetime $=x \in \mathbb{R}^{d_{\text {in }}}+$ group structure + causality
- dictates how coordinates can be transformed
- invariances by translation, rotation, coordinate permutation
- locality (from kinetic operator, prevents causality violation)

Theory space

- data-space \neq spacetime \rightarrow avoid bias from particle physics
- spacetime $=x \in \mathbb{R}^{d_{\text {in }}}+$ group structure + causality
- dictates how coordinates can be transformed
- invariances by translation, rotation, coordinate permutation
- locality (from kinetic operator, prevents causality violation)
- data-space
- bi-local kernel \rightarrow non-local interactions?
- symmetries of inputs and outputs?
- natural UV cutoff: machine precision

Theory space

- data-space \neq spacetime \rightarrow avoid bias from particle physics
- spacetime $=x \in \mathbb{R}^{d_{\text {in }}}+$ group structure + causality
- dictates how coordinates can be transformed
- invariances by translation, rotation, coordinate permutation
- locality (from kinetic operator, prevents causality violation)
- data-space
- bi-local kernel \rightarrow non-local interactions?
- symmetries of inputs and outputs?
- natural UV cutoff: machine precision
- neural network phenomenology

1. assumptions dictated by numerical evidences
2. write model to match observations
3. use model to check theoretical facts (dualities...)
ex.: local interactions sufficient for simple models [2008.08601, HMS], study of input/output symmetries [2106.00694, HMS]

Examples of interactions

- local interactions

$$
S_{\text {int }}=\sum_{n} g_{n} \int \mathrm{~d}^{d_{\text {in }}} x f(x)^{n}
$$

- non-local interactions and coupling functions

$$
S_{\text {int }}=\int \mathrm{d}^{d_{\text {in }}} x_{1} \cdots \mathrm{~d}^{d_{\text {in }}} x_{n} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}\right) \cdots f\left(x_{n}\right)
$$

- delocalized fields [2111.03672, HE-Fırat-Zwiebach]

$$
\tilde{f}(x):=\int \mathrm{d}^{d_{\mathrm{in}}} y \kappa(x, y) f(y)
$$

- tensor models: break permutation invariance [Gurau '16]

$$
S_{\text {int }}=g \int \mathrm{~d}^{3} x \mathrm{~d}^{3} y f\left(x_{1}, x_{2}, x_{3}\right) f\left(x_{1}, y_{2}, y_{3}\right) f\left(y_{1}, y_{2}, y_{3}\right) f\left(y_{1}, x_{2}, x_{3}\right)
$$

$f(x)=3$-tensor field with continuous indices, pairwise contractions

GaussNet

Setup in this talk and [2108.01403, HE-Lahoche-Samary]:

- take $d_{\text {out }}=1$
- translation-invariant activation function

$$
g\left(W_{0} x+b_{0}\right)=\frac{\exp \left(W_{0} x+b_{0}\right)}{\sqrt{\exp \left[2\left(\sigma_{b}^{2}+\frac{\sigma_{w}^{2}}{d_{\text {in }}} x^{2}\right)\right]}}
$$

(stricly speaking, activation func. + normalization)

- GP kernel [2008.08601, HMS]

$$
K(x, y):=\sigma_{b}^{2}+K_{W}(x, y), \quad K_{W}(x, y)=\sigma_{W}^{2} \mathrm{e}^{-\frac{\sigma_{W}^{2}}{22 d_{\mathrm{in}}}|x-y|^{2}}
$$

- note: [2008.08601, HMS] also considers ReLU and Erf functions

Numerical setup

[2008.08601, HMS; 2108.01403, HE-Lahoche-Samary]
$\rightarrow d_{\mathrm{in}}=1, \sigma_{b}=1, N \in\{2,3,4,5,10,20,50,100,500,1000\}$

- $n_{\text {bags }}$ distinct statistical ensembles of $n_{\text {nets }}$ networks each
- "experimental" Green functions

$$
\begin{gathered}
\bar{G}_{\text {exp }}^{(n)}\left(x_{1}, \ldots, x_{n}\right):=\left.\frac{1}{n_{\text {bags }}} \sum_{A=1}^{n_{\text {bags }}} G_{\text {exp }}^{(n)}\left(x_{1}, \ldots, x_{n}\right)\right|_{\text {bag } A} \\
G_{\exp }^{(n)}\left(x_{1}, \ldots, x_{n}\right):=\frac{1}{n_{\text {nets }}} \sum_{\alpha=1}^{n_{\text {nets }}} f_{\alpha}\left(x_{1}\right) \cdots f_{\alpha}\left(x_{n}\right) \\
\Delta G_{\exp }^{(n)}:=\bar{G}_{\mathrm{exp}}^{(n)}-G_{0}^{(n)}, \quad m_{n}:=\frac{\Delta G_{\mathrm{exp}}^{(n)}}{G_{0}^{(n)}}
\end{gathered}
$$

- $x^{(1)}, \ldots, x^{(6)} \in\{-0.01,-0.006,-0.002,0.002,0.006,0.01\}$ \rightarrow evaluate Green functions for all inequivalent combinations

Effective action

- numerical results

$$
\forall N: \quad m_{2} \approx 0, \quad \forall n \geq 2: \quad m_{2 n}=O\left(\frac{1}{N}\right)
$$

- agreement with N-scaling formulas [2008.08601, HMS;
2108.01403, HE-Lahoche-Samary]

$$
G_{c}^{(2 n)}=O\left(\frac{1}{N^{n-1}}\right)
$$

$>$ extract single number $\langle | m_{n}| \rangle$: average $\left|m_{n}\left(x_{1}, \ldots, x_{n}\right)\right|$ over all combinations of points

- compare with background: standard deviation of $G_{e \times p}^{(n)}$ over all bags, then average over all combinations of points (compare statistical deviation and deviation from free result)

Effective action

- numerical results

$$
\forall N: \quad m_{2} \approx 0, \quad \forall n \geq 2: \quad m_{2 n}=O\left(\frac{1}{N}\right)
$$

- agreement with N-scaling formulas [2008.08601, HMS;
2108.01403, HE-Lahoche-Samary]

$$
G_{c}^{(2 n)}=O\left(\frac{1}{N^{n-1}}\right)
$$

- extract single number $\langle | m_{n}| \rangle$: average $\left|m_{n}\left(x_{1}, \ldots, x_{n}\right)\right|$ over all combinations of points
\rightarrow compare with background: standard deviation of $G_{e \times p}^{(n)}$ over all bags, then average over all combinations of points (compare statistical deviation and deviation from free result)
- compute 1 Pl action with quartic and sextic interactions:

$$
\Gamma=S_{0}+\frac{u_{4}}{4!} \int \mathrm{d}^{d_{\mathrm{in}}} \times f(x)^{4}+\frac{u_{6}}{6!} \int \mathrm{d}^{d_{\mathrm{in}}} \times f(x)^{6}
$$

Green function deviations: histogram

$$
\begin{gathered}
\sigma_{W}=1 \\
n_{\text {bags }}=20 \\
n_{\text {nets }}=30000
\end{gathered}
$$

Green function deviations: mean values

$$
\begin{gathered}
\sigma_{W}=1 \\
n_{\text {bags }}=20 \\
n_{\text {nets }}=30000
\end{gathered}
$$

Extract quartic coupling

[2008.08601, HMS; 2108.01403, HE-Lahoche-Samary]

- 4-point Feynman diagrams (1PI \rightarrow no loops)

([2008.08601, HMS] works with microscopic action, studies only $\left.\left|u_{4}\right|\right)$

Extract quartic coupling

[2008.08601, HMS; 2108.01403, HE-Lahoche-Samary]

- 4-point Feynman diagrams (1PI \rightarrow no loops)

- measure u_{4} from $G_{\text {exp }}^{(4)}$

$$
\begin{gathered}
u_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-\frac{\Delta G_{\exp }^{(4)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{N_{K}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)} \\
N_{K}:=\int \mathrm{d}^{d_{\text {in }}} x K_{W}\left(x, x_{1}\right) K_{W}\left(x, x_{2}\right) K_{W}\left(x, x_{3}\right) K_{W}\left(x, x_{4}\right)
\end{gathered}
$$

Extract quartic coupling

[2008.08601, HMS; 2108.01403, HE-Lahoche-Samary]

- 4-point Feynman diagrams (1PI \rightarrow no loops)

- measure u_{4} from $G_{\text {exp }}^{(4)}$

$$
\begin{gathered}
u_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-\frac{\Delta G_{\exp }^{(4)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{N_{K}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)} \\
N_{K}:=\int \mathrm{d}^{d_{\text {in }}} \times K_{W}\left(x, x_{1}\right) K_{W}\left(x, x_{2}\right) K_{W}\left(x, x_{3}\right) K_{W}\left(x, x_{4}\right)
\end{gathered}
$$

- result: $u_{4} \approx$ constant <0
\rightarrow need $u_{6}>0$ for path integral stability
([2008.08601, HMS] works with microscopic action, studies only $\left|u_{4}\right|$)

Quartic coupling

Outline: 3. Renormalization group in NN-QFT

Motivations

NN-QFT correspondence

Renormalization group in NN-QFT

Conclusion

Non-perturbative RG

partition function and microscopic action

$$
Z[j]:=\mathrm{e}^{W[j]}:=\int \mathrm{d} \phi \mathrm{e}^{-S[\phi]-j \cdot \phi}
$$

$S[\phi]$ encodes microscopic (UV) physics

Non-perturbative RG

- partition function and microscopic action

$$
Z[j]:=\mathrm{e}^{W[j]}:=\int \mathrm{d} \phi \mathrm{e}^{-S[\phi]-j \cdot \phi}
$$

$S[\phi]$ encodes microscopic (UV) physics

- classical field and 1PI effective action

$$
\varphi(x):=\frac{\delta W}{\delta j}, \quad \Gamma[\varphi]:=j \cdot \varphi-W[j]
$$

$\lceil[\varphi]$ encodes effective (IR) physics

Non-perturbative RG

- partition function and microscopic action

$$
Z[j]:=\mathrm{e}^{W[j]}:=\int \mathrm{d} \phi \mathrm{e}^{-S[\phi]-j \cdot \phi}
$$

$S[\phi]$ encodes microscopic (UV) physics

- classical field and 1PI effective action

$$
\varphi(x):=\frac{\delta W}{\delta j}, \quad \Gamma[\varphi]:=j \cdot \varphi-W[j]
$$

$\Gamma[\varphi]$ encodes effective (IR) physics

- renormalization group (RG) flow:
- organize theory according to length scales
- integrate degrees of freedom (dof) step by step
\rightarrow flow in the theory space
- connect UV to IR
- review: [cond-mat/0702365, Delamotte]

Wilson RG: momentum-shell integration

- split field in slow and fast modes with respect to scale k

$$
\phi(p)=\phi_{<}(p)+\phi_{>}(p), \quad\left\{\begin{array}{l}
\phi_{<}(p):=\theta(|p|<k) \phi(p) \\
\phi_{>}(p):=\theta(|p| \geq k) \phi(p)
\end{array}\right.
$$

- propagator decomposes

$$
K(p)=K_{<}(p)+K_{>}(p), \quad\left\{\begin{array}{l}
K_{<}(p):=\theta(|p|<k) K(p) \\
K_{>}(p):=\theta(|p| \geq k) K(p)
\end{array}\right.
$$

Wilson RG: momentum-shell integration

- split field in slow and fast modes with respect to scale k

$$
\phi(p)=\phi_{<}(p)+\phi_{>}(p), \quad\left\{\begin{array}{l}
\phi_{<}(p):=\theta(|p|<k) \phi(p) \\
\phi_{>}(p):=\theta(|p| \geq k) \phi(p)
\end{array}\right.
$$

- propagator decomposes

$$
K(p)=K_{<}(p)+K_{>}(p), \quad\left\{\begin{array}{l}
K_{<}(p):=\theta(|p|<k) K(p) \\
K_{>}(p):=\theta(|p| \geq k) K(p)
\end{array}\right.
$$

- Wilsonian effective action for $\phi_{<}$

$$
\begin{aligned}
S_{\text {eff }}\left[\phi_{<}\right] & :=\frac{1}{2} \phi_{<} \cdot K_{<}^{-1} \cdot \phi_{<}+S_{\text {eff, int }}\left[\phi_{<}\right] \\
\mathrm{e}^{-S_{\text {eff, int }}\left[\phi_{<}\right]} & :=\int \mathrm{d} \phi_{>} \mathrm{e}^{-\frac{1}{2} \phi_{>} \cdot K_{>}^{-1} \cdot \phi_{>}-S_{\text {int }}\left[\phi_{<}+\phi_{>}\right]}
\end{aligned}
$$

$\phi_{<}$background, $\phi_{>}$fluctuations

Wilson-Polchinski RG

- hard cutoff not convenient, use smooth regulator

$$
K_{k}(p):=R_{k}(p) K(p), \quad R_{k}(p) \rightarrow \begin{cases}1 & p \ll k \\ 0 & p \gg k\end{cases}
$$

- measure factorization \Rightarrow field decomposition

$$
\begin{gathered}
\phi(p)=\chi(p)+\Phi(p) \\
\int \mathrm{d} \phi \mathrm{e}^{-\frac{1}{2} \phi \cdot K^{-1} \cdot \phi}=\left(\int \mathrm{d} \chi \mathrm{e}^{-\frac{1}{2} \chi \cdot K_{k}^{-1} \cdot \chi}\right) \times\left(\int \mathrm{d} \Phi \mathrm{e}^{-\frac{1}{2} \phi \cdot\left(K-K_{k}\right)^{-1} \cdot \Phi}\right)
\end{gathered}
$$

Wilson-Polchinski RG

- hard cutoff not convenient, use smooth regulator

$$
K_{k}(p):=R_{k}(p) K(p), \quad R_{k}(p) \rightarrow \begin{cases}1 & p \ll k \\ 0 & p \gg k\end{cases}
$$

- measure factorization \Rightarrow field decomposition

$$
\begin{gathered}
\phi(p)=\chi(p)+\Phi(p) \\
\int \mathrm{d} \phi \mathrm{e}^{-\frac{1}{2} \phi \cdot K^{-1} \cdot \phi}=\left(\int \mathrm{d} \chi \mathrm{e}^{-\frac{1}{2} \chi \cdot K_{k}^{-1} \cdot \chi}\right) \times\left(\int \mathrm{d} \Phi \mathrm{e}^{-\frac{1}{2} \phi \cdot\left(K-K_{k}\right)^{-1} \cdot \phi}\right)
\end{gathered}
$$

- effective action at scale k (UV cut-off for χ)

$$
\mathrm{e}^{-S_{\text {int }, k}[\chi]}:=\int \mathrm{d} \Phi \mathrm{e}^{-\frac{1}{2} \Phi \cdot\left(K-K_{k}\right)^{-1} \cdot \Phi-S_{\text {int }}[\chi+\Phi]}
$$

Wilson-Polchinski RG

- hard cutoff not convenient, use smooth regulator

$$
K_{k}(p):=R_{k}(p) K(p), \quad R_{k}(p) \rightarrow \begin{cases}1 & p \ll k \\ 0 & p \gg k\end{cases}
$$

- measure factorization \Rightarrow field decomposition

$$
\begin{gathered}
\phi(p)=\chi(p)+\Phi(p) \\
\int \mathrm{d} \phi \mathrm{e}^{-\frac{1}{2} \phi \cdot K^{-1} \cdot \phi}=\left(\int \mathrm{d} \chi \mathrm{e}^{-\frac{1}{2} \chi \cdot K_{k}^{-1} \cdot \chi}\right) \times\left(\int \mathrm{d} \Phi \mathrm{e}^{-\frac{1}{2} \Phi \cdot\left(K-K_{k}\right)^{-1} \cdot \Phi}\right)
\end{gathered}
$$

- effective action at scale k (UV cut-off for χ)

$$
\mathrm{e}^{-S_{\text {int }, k}[\chi]}:=\int \mathrm{d} \Phi \mathrm{e}^{-\frac{1}{2} \Phi \cdot\left(K-K_{k}\right)^{-1} \cdot \Phi-S_{\text {int }}[\chi+\Phi]}
$$

- Polchinski equation

$$
k \frac{\mathrm{~d} S_{k}}{\mathrm{~d} k}=\int \frac{\mathrm{d}^{d} p}{(2 \pi)^{d}} k \frac{\mathrm{~d} K_{k}(p)}{\mathrm{d} k}\left[\frac{\delta^{2} S_{k}}{\delta \chi(p) \delta \chi(-p)}-\frac{\delta S_{k}}{\delta \chi(p)} \frac{\delta S_{k}}{\delta \chi(-p)}\right]
$$

Wetterich formalism

- non-perturbative truncation with Polchinski equation difficult \rightarrow Wetterich formalism
- regularize path integral

$$
Z_{k}[j]:=\mathrm{e}^{W_{k}[j]}:=\int \mathrm{d} \phi \mathrm{e}^{-S[\phi]-\frac{1}{2} \phi \cdot R_{k} \cdot \phi-j \cdot \phi}
$$

- R_{k} cutoff function s.t. $W_{k=\infty}=S, W_{k=0}=W$

$$
R_{k=\infty}(p)=\infty, \quad R_{k=0}(p)=0, \quad R_{k}(|p|>k) \approx 0
$$

Wetterich formalism

- non-perturbative truncation with Polchinski equation difficult \rightarrow Wetterich formalism
- regularize path integral

$$
Z_{k}[j]:=\mathrm{e}^{W_{k}[j]}:=\int \mathrm{d} \phi \mathrm{e}^{-S[\phi]-\frac{1}{2} \phi \cdot R_{k} \cdot \phi-j \cdot \phi}
$$

- R_{k} cutoff function s.t. $W_{k=\infty}=S, W_{k=0}=W$

$$
R_{k=\infty}(p)=\infty, \quad R_{k=0}(p)=0, \quad R_{k}(|p|>k) \approx 0
$$

- effective average action action at scale k (IR cutoff for φ)

$$
\varphi(x):=\frac{\delta W_{k}}{\delta j}, \quad \Gamma_{k}[\varphi]:=j \cdot \varphi-W_{k}[j]-\frac{1}{2} \varphi \cdot R_{k} \cdot \varphi
$$

- Legendre transform requires correction to satisfy:

$$
\Gamma_{k=0}[\varphi]=\Gamma[\varphi], \quad \Gamma_{k=\infty}[\varphi]=S[\varphi]
$$

Wetterich equation

- Wetterich equation

$$
\frac{\mathrm{d} \Gamma_{k}}{\mathrm{~d} k}=\frac{1}{2} \frac{\mathrm{~d} R_{k}}{\mathrm{~d} k} \operatorname{tr}\left(\Gamma_{k}^{\prime \prime}+R_{k}\right)^{-1}
$$

$\Gamma_{k}^{\prime \prime}$ second derivatives of Γ w.r.t. φ

- solving requires approximation
- restrict theory space to finite-dimensional subspace
- derivative / local potential expansion
- non-perturbative formalism, finite coupling constants
- large N expansion: keeping up to $\phi^{2 n} \leftrightarrow O\left(1 / N^{n-1}\right)$ effects

RG for NN-QFT

- machine learning: find patterns in large dataset, ignoring noise \rightarrow similar to RG flow

RG for NN-QFT

- machine learning: find patterns in large dataset, ignoring noise \rightarrow similar to RG flow
- action: effective (IR) known, microscopic (UV) unknown
- opposite as usual, need to reverse flow
- since information is lost, no 1-to-1 map UV / IR
- but any microscopic theory in IR universality class is fine

(Note: [2008.08601, Halverson-Maiti-Stoner] defines RG flow w.r.t. IR cutoff)

Momentum space 2-point function

- momentum space propagator

$$
K(p)=\left(\sigma_{W}^{2}\right)^{1-\frac{d_{\text {in }}}{2}}\left(\frac{d_{\text {in }}}{2 \pi}\right)^{\frac{d_{\text {in }}}{2}} \exp \left[-\frac{d_{\text {in }}}{2 \sigma_{W}^{2}} p^{2}\right]
$$

- momentum expansion (derivatives subleading in $\mathrm{IR},|p| \rightarrow 0$)

$$
K(p) \approx \frac{Z_{0}^{-1}}{m_{0}^{2}+p^{2}+O\left(p^{2}\right)}, \quad m_{0}^{2}:=\frac{2 \sigma_{W}^{2}}{d_{\mathrm{in}}}
$$

\rightarrow can be used in deep IR

- typical mass scale \rightarrow correlation length $\xi:=m_{0}^{-1}$

Momentum space 2-point function

- momentum space propagator

$$
K(p)=\left(\sigma_{W}^{2}\right)^{1-\frac{d_{\text {in }}}{2}}\left(\frac{d_{\text {in }}}{2 \pi}\right)^{\frac{d_{\text {in }}}{2}} \exp \left[-\frac{d_{\text {in }}}{2 \sigma_{W}^{2}} p^{2}\right]
$$

- momentum expansion (derivatives subleading in IR, $|p| \rightarrow 0$)

$$
K(p) \approx \frac{z_{0}^{-1}}{m_{0}^{2}+p^{2}+O\left(p^{2}\right)}, \quad m_{0}^{2}:=\frac{2 \sigma_{W}^{2}}{d_{\mathrm{in}}}
$$

\rightarrow can be used in deep IR

- typical mass scale \rightarrow correlation length $\xi:=m_{0}^{-1}$
- two possible RG scales: a_{0}^{-1} (machine precision) and m_{0}
- effective action: kinetic term + local potential

$$
\Gamma_{k}=\Gamma_{k, 0}+\frac{u_{4}(k)}{4!} \int \mathrm{d}^{d_{\mathrm{in}}} x \varphi(x)^{4}+\frac{u_{6}(k)}{6!} \int \mathrm{d}^{d_{\mathrm{in}}} x \varphi(x)^{6}
$$

Passive / active RG

\rightarrow passive RG: keep $m_{0}=\xi^{-1}$ fixed, vary $k=a^{-1} \leq a_{0}^{-1}$
(keep neural network fixed, vary data)

- active RG: keep a_{0} fixed, vary $k=m \geq m_{0}$ (keep data fixed, vary neural network)

Passive RG: deep IR

- 2-derivative approximation

$$
\Gamma_{k, 0}=\frac{1}{2} \int \frac{\mathrm{~d}^{d_{\mathrm{in}}} p}{(2 \pi)^{d_{\mathrm{in}}}} \varphi(-p)\left(p^{2}+m(k)^{2}\right) \varphi(p)
$$

- flow equations

$$
\begin{aligned}
& k \frac{\mathrm{~d} \bar{u}_{2}}{\mathrm{~d} k}=-2 \bar{u}_{2}-\frac{K_{d_{\mathrm{in}}} \bar{u}_{4}}{\left(1+\bar{u}_{2}\right)^{2}} \\
& k \frac{\mathrm{~d} \bar{u}_{4}}{\mathrm{~d} k}=-\left(4-d_{\text {in }}\right) \bar{u}_{4}-\frac{K_{d_{\text {din }}} \bar{u}_{6}}{\left(1+\bar{u}_{2}\right)^{2}}+\frac{6 K_{d_{\text {in }}} \bar{u}_{4}^{2}}{\left(1+\bar{u}_{2}\right)^{3}} \\
& k \frac{\mathrm{~d} \bar{u}_{6}}{\mathrm{~d} k}=-\left(6-2 d_{\text {in }}\right) \bar{u}_{6}+\frac{30 K_{d_{\text {in }}} \bar{u}_{4} \bar{u}_{6}}{\left(1+\bar{u}_{2}\right)^{3}}-\frac{90 K_{d_{\text {in }}} \bar{u}_{4}^{3}}{\left(1+\bar{u}_{2}\right)^{4}}
\end{aligned}
$$

where

$$
\begin{gathered}
\bar{u}_{2 n}:=k^{(n-1) d_{\mathrm{in}}-2 n} u_{2 n}, \quad u_{2}:=m^{2} \\
K_{d_{\text {in }}}:=\frac{1}{(2 \pi)^{d_{\text {in }}}} \frac{\pi^{d_{\mathrm{in}} / 2}}{\Gamma\left(d_{\mathrm{in}} / 2+1\right)}
\end{gathered}
$$

- can also study deep UV (need momentum-dependent vertices)

Active RG

- propagator looks like zero-momentum propagator with UV regulator with scale k

$$
K_{k}(p):=\frac{\mathrm{e}^{-p^{2} / k^{2}}}{k^{2}}, \quad k^{2}:=\frac{2 \sigma_{W}^{2}}{d_{\mathrm{in}}}
$$

- changing $\sigma_{W} \approx$ changing UV cutoff k
\rightarrow define running scale

Active RG

- propagator looks like zero-momentum propagator with UV regulator with scale k

$$
K_{k}(p):=\frac{\mathrm{e}^{-p^{2} / k^{2}}}{k^{2}}, \quad k^{2}:=\frac{2 \sigma_{W}^{2}}{d_{\mathrm{in}}}
$$

- changing $\sigma_{W} \approx$ changing UV cutoff k \rightarrow define running scale
- classical action with K_{k} satisfies Polchinski equation but should be the effective propagator \Rightarrow define

$$
\Gamma_{k}^{\prime \prime}(p)+R_{k}(p):=k^{2} \mathrm{e}^{p^{2} / k^{2}}
$$

Active RG

- propagator looks like zero-momentum propagator with UV regulator with scale k

$$
K_{k}(p):=\frac{\mathrm{e}^{-p^{2} / k^{2}}}{k^{2}}, \quad k^{2}:=\frac{2 \sigma_{W}^{2}}{d_{\mathrm{in}}}
$$

- changing $\sigma_{W} \approx$ changing UV cutoff k
\rightarrow define running scale
- classical action with K_{k} satisfies Polchinski equation but should be the effective propagator \Rightarrow define

$$
\Gamma_{k}^{\prime \prime}(p)+R_{k}(p):=k^{2} \mathrm{e}^{p^{2} / k^{2}}
$$

- flow equations

$$
\sigma_{W} \frac{\mathrm{~d} u_{4}}{\mathrm{~d} \sigma_{W}}=\left(4-d_{\text {in }}\right) u_{4}, \quad \sigma_{W} \frac{\mathrm{~d} u_{6}}{\mathrm{~d} \sigma_{W}}=\left(6-2 d_{\text {in }}\right) u_{6}
$$

Results: active RG

$N=1000, \log _{10}\left|u_{4,0}\right|=-0.828$
$\log _{10}\left|u_{4}\right|=-3.08 \log _{10} \sigma_{W}-0.83$
theory: $\log _{10}\left|u_{4}\right|=-3.00 \log _{10} \sigma_{w}-0.83$

$$
\begin{aligned}
& \sigma_{W} \in\{1.0,1.5, \ldots, 10,20\} \\
& n_{\text {bags }}=30, \quad n_{\text {nets }}=30000
\end{aligned}
$$

Detour: string field theory

- active RG expected from string field theory
- standard deviation $\sigma_{W} \sim$ stub parameter s_{0}
- GaussNet QFT $=p$-adic string theory [hep-th/0003278, Ghoshal-Sen; hep-th/0207107, Moeller-Zwiebach]

Detour: string field theory

- active RG expected from string field theory
- standard deviation $\sigma_{W} \sim$ stub parameter s_{0}
- GaussNet QFT $=p$-adic string theory [hep-th/0003278, Ghoshal-Sen; hep-th/0207107, Moeller-Zwiebach]
- "adding stubs to string vertices / propagator" = vary region of moduli space corresponding to fundamental interactions
- changing stub length $=$ Wilsonian RG [Brustein-De Alwis '91; hep-th/0105272, Nakatsu; 1609.00459, Sen]
- stub parameter responsible for good UV behavior in string theory [1604.01783, Pius-Sen]

Detour: string field theory

- active RG expected from string field theory
- standard deviation $\sigma_{W} \sim$ stub parameter s_{0}
- GaussNet QFT $=p$-adic string theory [hep-th/0003278, Ghoshal-Sen; hep-th/0207107, Moeller-Zwiebach]
- "adding stubs to string vertices / propagator" = vary region of moduli space corresponding to fundamental interactions
- changing stub length $=$ Wilsonian RG [Brustein-De Alwis '91; hep-th/0105272, Nakatsu; 1609.00459, Sen]
- stub parameter responsible for good UV behavior in string theory [1604.01783, Pius-Sen]
- QFT with stubs studied in [2108.04312, Chiaffrino-Sachs; HE-Godet, to appear]
- non-locality studied in [2111.03672, HE-Fırat-Zwiebach]

Outline: 4. Conclusion

Motivations
 NN-QFT correspondence
 Renormalization group in NN-QFT

Conclusion

Conclusion and outlook

Achievements:

- additional checks of the NN-QFT correspondence
- map of the possible theory space
- change in standard deviation $=$ RG flow
- numerical tests of the equations

Conclusion and outlook

Achievements:

- additional checks of the NN-QFT correspondence
- map of the possible theory space
- change in standard deviation $=$ RG flow
- numerical tests of the equations

Future directions:

- increase $d_{\text {in }}, d_{\text {out }}$, and order in N expansion; large $d_{\text {in }}$ limit
- increase number of hidden layers
- extend to non-translation invariant kernels (ReLU...)
- 2PI formalism [2102.13628, Blaizot-Pawlowski-Reinosa]
- field redefinitions for non-local theories [2111.03672, HE-Fırat-Zwiebach]
- study evolution of QFT under training

