Topics in string amplitudes

Harold Erbin

Università di Torino (Italy)

In collaboration with:

- Corinne de Lacroix
- Juan Maldacena
- Ashoke Sen
- Dimitri Skliros
arXiv: 1810.07197, 1906.06051

Outline: 1. Introduction

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion

Properties of string theory

String theory $=$ theory of extended objects

- consistency? (unitarity, crossing symmetry...)
- differences with local point-particle QFT?
- non-locality?

Properties of string theory

String theory $=$ theory of extended objects

- consistency? (unitarity, crossing symmetry...)
- differences with local point-particle QFT?
- non-locality?

Point-particle QFT

- consistency assessed from S-matrix
- locality \sim analyticity of S-matrix

Properties of string theory

String theory $=$ theory of extended objects

- consistency? (unitarity, crossing symmetry...)
- differences with local point-particle QFT?
- non-locality?

Point-particle QFT

- consistency assessed from S-matrix
- locality \sim analyticity of S-matrix

String theory properties

1. if possible, direct proof
2. otherwise, prove property consequence \rightarrow indirect test

Properties of string theory

String theory $=$ theory of extended objects

- consistency? (unitarity, crossing symmetry...)
- differences with local point-particle QFT?
- non-locality?

Point-particle QFT

- consistency assessed from S-matrix
- locality \sim analyticity of S-matrix

String theory properties

1. if possible, direct proof
2. otherwise, prove property consequence \rightarrow indirect test

Natural framework: string field theory (off-shell, renormalization...)

Plan

Properties of (super)string amplitudes:

1. Tree-level 2-point amplitude
with: Juan Maldacena, Dimitri Skliros [1906.06051]
2. Analyticity and crossing symmetry at all loops with: Corinne de Lacroix, Ashoke Sen [1810.07197]

2-point amplitude

- QFT

$$
A_{2}\left(k, k^{\prime}\right)=2 k^{0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

(1-particle state normalization, cluster decomposition)

2-point amplitude

- QFT

$$
A_{2}\left(k, k^{\prime}\right)=2 k^{0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

(1-particle state normalization, cluster decomposition)

- string theory

$$
\begin{aligned}
A_{2} & \sim \frac{1}{\operatorname{VolSL}(2, \mathbb{C})} \int \mathrm{d}^{2} z \mathrm{~d}^{2} z^{\prime}\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}} \\
& \sim \frac{1}{\operatorname{Vol~} \mathbb{R}_{+}}\left\langle V_{k}(\infty, \infty) V_{k^{\prime}}(0,0)\right\rangle_{S^{2}}
\end{aligned}
$$

2-point amplitude

- QFT

$$
A_{2}\left(k, k^{\prime}\right)=2 k^{0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

(1-particle state normalization, cluster decomposition)

- string theory (standard lore)

$$
\begin{aligned}
A_{2} & \sim \frac{1}{\operatorname{VolSL}(2, \mathbb{C})} \int \mathrm{d}^{2} z \mathrm{~d}^{2} z^{\prime}\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}} \\
& \sim \frac{1}{\operatorname{Vol~} \mathbb{R}_{+}}\left\langle V_{k}(\infty, \infty) V_{k^{\prime}}(0,0)\right\rangle_{S^{2}}=0
\end{aligned}
$$

BRST point of view: need $N_{\text {gh }}=6$ but only 2 operators $c \bar{c} V$

2-point amplitude

- QFT

$$
A_{2}\left(k, k^{\prime}\right)=2 k^{0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

(1-particle state normalization, cluster decomposition)

- string theory (standard lore)

$$
\begin{aligned}
A_{2} & \sim \frac{1}{\operatorname{VolSL}(2, \mathbb{C})} \int \mathrm{d}^{2} z \mathrm{~d}^{2} z^{\prime}\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}} \\
& \sim \frac{1}{\operatorname{Vol~} \mathbb{R}_{+}}\left\langle V_{k}(\infty, \infty) V_{k^{\prime}}(0,0)\right\rangle_{S^{2}}=0
\end{aligned}
$$

BRST point of view: need $N_{\text {gh }}=6$ but only 2 operators $c \bar{c} V$

QFT result is universal \rightarrow how to resolve contradiction?

2-point amplitude

- QFT

$$
A_{2}\left(k, k^{\prime}\right)=2 k^{0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

(1-particle state normalization, cluster decomposition)

- string theory (standard lore)

$$
\begin{aligned}
A_{2} & \sim \frac{1}{\operatorname{Vol~SL}(2, \mathbb{C})} \int \mathrm{d}^{2} z \mathrm{~d}^{2} z^{\prime}\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}} \\
& \sim \frac{1}{\operatorname{Vol~} \mathbb{R}_{+}}\left\langle V_{k}(\infty, \infty) V_{k^{\prime}}(0,0)\right\rangle_{S^{2}}=0
\end{aligned}
$$

BRST point of view: need $N_{\text {gh }}=6$ but only 2 operators $c \bar{c} V$

QFT result is universal \rightarrow how to resolve contradiction?

$$
\left\langle V_{k}(\infty, \infty) V_{k^{\prime}}(0,0)\right\rangle_{S^{2}} \propto \delta(0) \delta^{(D-1)}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)=\infty
$$

from on-shell + momentum conservation
\rightarrow ambiguous, need regularization / better gauge fixing

Analyticity and crossing symmetry

Analyticity of n-point amplitude $A_{n}\left(k_{1}, \ldots, k_{n}\right)$

- starting point for other properties (crossing symmetry, dispersion relations)
- related to locality and causality

Analyticity and crossing symmetry

Analyticity of n-point amplitude $A_{n}\left(k_{1}, \ldots, k_{n}\right)$

- starting point for other properties (crossing symmetry, dispersion relations)
- related to locality and causality

Crossing symmetry:

- relations between amplitudes with exchange of particles/anti-particles in initial/final states
- often assumed or observed (scattering amplitude program...)

Analyticity and crossing symmetry

Analyticity of n-point amplitude $A_{n}\left(k_{1}, \ldots, k_{n}\right)$

- starting point for other properties (crossing symmetry, dispersion relations)
- related to locality and causality

Crossing symmetry:

- relations between amplitudes with exchange of particles/anti-particles in initial/final states
- often assumed or observed (scattering amplitude program...)

Why a general proof?

- ensure observed examples not accident of simple amplitudes
- learn about fundamental properties of QFT

Method

Proof idea in QFT [Bros-Epstein-Glaser, '64-65]:

1. prove analyticity of S-matrix in "primitive domain" Δ
2. analytic extension $\mathcal{H}(\Delta)$
3. show that 2$) \Rightarrow$ crossing symmetry

Method

Proof idea in QFT [Bros-Epstein-Glaser, '64-65]:

1. prove analyticity of S-matrix in "primitive domain" Δ
2. analytic extension $\mathcal{H}(\Delta)$

3 . show that 2$) \Rightarrow$ crossing symmetry

Remarks:

- 1) is non-perturbative (full S-matrix)
- 2) and 3) are general statements from theory of several complex variables

Method

Proof idea in QFT [Bros-Epstein-Glaser, '64-65]:

1. prove analyticity of S-matrix in "primitive domain" Δ
2. analytic extension $\mathcal{H}(\Delta)$

3 . show that 2$) \Rightarrow$ crossing symmetry

Remarks:

- 1) is non-perturbative (full S-matrix)
- 2) and 3) are general statements from theory of several complex variables

String theory:

- interactions non-locality \rightarrow no position space Green functions
- prove 1) perturbatively from Feynman diagrams

Outline: 2. Two-point amplitude

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion

Gauge-fixed amplitude

- 2-point amplitude

$$
A_{0,2}\left(k, k^{\prime}\right)=\frac{8 \pi \alpha^{\prime-1}}{\operatorname{Vol}^{\mathcal{K}_{0}}} \int \mathrm{~d}^{2} z \mathrm{~d}^{2} z^{\prime}\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}}
$$

$\mathcal{K}_{0}:=\operatorname{PSL}(2, \mathbb{C})$

Gauge-fixed amplitude

- 2-point amplitude

$$
A_{0,2}\left(k, k^{\prime}\right)=\frac{8 \pi \alpha^{\prime-1}}{V_{o l} \mathcal{K}_{0}} \int \mathrm{~d}^{2} z \mathrm{~d}^{2} z^{\prime}\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}}
$$

$\mathcal{K}_{0}:=\operatorname{PSL}(2, \mathbb{C})$

- simple gauge-fixing

$$
A_{0,2}\left(k, k^{\prime}\right)=\frac{8 \pi \alpha^{\prime-1}}{\operatorname{Vol}_{2}}\left\langle V_{k}(\infty, \infty) V_{k^{\prime}}(0,0)\right\rangle_{S^{2}}
$$

$\mathcal{K}_{2}:=\mathrm{U}(1) \times \mathbb{R}_{+}=$dilatation \timesrotation

Gauge-fixed amplitude

- 2-point amplitude

$$
A_{0,2}\left(k, k^{\prime}\right)=\frac{8 \pi \alpha^{\prime-1}}{\operatorname{Vol} \mathcal{K}_{0}} \int \mathrm{~d}^{2} z \mathrm{~d}^{2} z^{\prime}\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}}
$$

$\mathcal{K}_{0}:=\operatorname{PSL}(2, \mathbb{C})$

- simple gauge-fixing

$$
A_{0,2}\left(k, k^{\prime}\right)=\frac{8 \pi \alpha^{\prime-1}}{\operatorname{Vol}^{\mathcal{K}_{2}}}\left\langle V_{k}(\infty, \infty) V_{k^{\prime}}(0,0)\right\rangle_{S^{2}}
$$

$\mathcal{K}_{2}:=\mathrm{U}(1) \times \mathbb{R}_{+}=$dilatation \timesrotation

- evaluate CFT correlation function + regularize zero-modes

$$
A_{2}\left(k, k^{\prime}\right)=\lim _{\kappa^{0} \rightarrow 0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) \frac{16 \pi^{2} \mathrm{i} \delta\left(\kappa^{0}\right)}{\alpha^{\prime} \operatorname{Vol} \mathcal{K}_{2}}
$$

Normalization: $\quad\left\langle V_{k}(z, \bar{z}) V_{k^{\prime}}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle_{S^{2}}=\frac{i(2 \pi)^{D} \delta^{(D)}\left(k+k^{\prime}\right)}{\left|z-z^{\prime}\right|^{4}}$. numerator $=$ zero-modes $\mathrm{e}^{\mathrm{i}\left(k+k^{\prime}\right) \cdot x}$ for Lorentzian target spacetime

Compute CKV volume (1)

- Volume regularization

$$
\begin{aligned}
\text { Vol } \mathcal{K}_{2} & =\int \frac{\mathrm{d}^{2} z}{|z|^{2}}=2 \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{\infty} \frac{\mathrm{d} r}{r} \\
& =4 \pi \int_{-\infty}^{\infty} \mathrm{d} \tau=4 \pi \lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} \varepsilon \tau} \\
\operatorname{Vol}_{\varepsilon} \mathcal{K}_{2} & =8 \pi^{2} \delta(\varepsilon)
\end{aligned}
$$

- (τ, ε) Euclidean worldsheet (time, energy) on the cylinder (dimensionless)
- problem: Lorentzian spacetime, dimensionful energy
\rightarrow need Wick rotation and rescaling

Compute CKV volume (2)

Jacobian from mode expansions without oscillators:

1. worldsheet Wick rotation

$$
\tau=\mathrm{i} t, \quad \varepsilon=-\mathrm{i} E
$$

2. Lorentzian regularized volume

$$
\operatorname{Vol}_{M, E} \mathcal{K}_{2}=8 \pi^{2} \mathrm{i} \delta(E)
$$

3. Lorentzian mode expansion

$$
X^{0}=x^{0}+\alpha^{\prime} k^{0} t
$$

4. scale between spacetime and worldsheet times / energies

$$
t=\frac{\xi^{0}}{\alpha^{\prime} k^{0}} \Longrightarrow E=\alpha^{\prime} k^{0} \kappa^{0}
$$

$\left(\xi^{0}, \kappa^{0}\right)$ dimensionful worldsheet variables
5. regularized Lorentzian volume

$$
\operatorname{Vol}_{M, \kappa^{0}} \mathcal{K}_{2}=\frac{8 \pi^{2} \mathrm{i} \delta\left(\kappa^{0}\right)}{\alpha^{\prime} k^{0}}
$$

Result

$$
\begin{aligned}
A_{2}\left(k, k^{\prime}\right)= & \lim _{\kappa^{0} \rightarrow 0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) \frac{16 \pi^{2} \mathrm{i} \delta\left(\kappa^{0}\right)}{\alpha^{\prime} \mathrm{Vol}_{M, \kappa^{0}} \mathcal{K}_{2}} \\
& \operatorname{Vol}_{M, \kappa^{0}} \mathcal{K}_{2}=\frac{8 \pi^{2} \mathrm{i} \delta\left(\kappa^{0}\right)}{\alpha^{\prime} k^{0}}
\end{aligned}
$$

Recover QFT result:

$$
A_{2}\left(k, k^{\prime}\right)=2 k^{0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right)
$$

Result

$$
\begin{gathered}
A_{2}\left(k, k^{\prime}\right)=\lim _{\kappa^{0} \rightarrow 0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) \frac{16 \pi^{2} \mathrm{i} \delta\left(\kappa^{0}\right)}{\alpha^{\prime} \operatorname{Vol}_{M, \kappa^{0}} \mathcal{K}_{2}} \\
\operatorname{Vol}_{M, \kappa^{0}} \mathcal{K}_{2}=\frac{8 \pi^{2} \mathrm{i} \delta\left(\kappa^{0}\right)}{\alpha^{\prime} k^{0}}
\end{gathered}
$$

Recover QFT result:

$$
A_{2}\left(k, k^{\prime}\right)=2 k^{0}(2 \pi)^{D-1} \delta^{(D-1)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right)
$$

Remarks:

- regularization ambiguous \rightarrow fixed from unitarity
- Jacobian can be computed from path integral (field shift)
- better approach: gauge fix X^{0} [1906.06051]
- operator approach [1909.03672, Seki-Takahashi]
- can always insert 6 ghosts example: using $\langle 0| c_{-1} \bar{c}_{-1} c_{0} \bar{c}_{0} c_{1} \bar{c}_{1}|0\rangle=1$

$$
A_{2}\left(k, k^{\prime}\right)=\frac{C_{S^{2}}}{\operatorname{Vol} \mathcal{K}_{2}}\left\langle c \bar{c} V_{k}(\infty, \infty) c_{0} \bar{c}_{0} c \bar{c} V_{k^{\prime}}(0,0)\right\rangle_{S^{2}}
$$

Zero-point amplitude

Next step
Generalization to 0-point function \rightarrow compute on-shell action

- Zero-point amplitude for Minkowski spacetime \mathcal{M} :

$$
A_{0}[\mathcal{M}] \sim \frac{\delta^{(D)}(0)}{\operatorname{Vol~SL}(2, \mathbb{C})} \stackrel{?}{=} \infty
$$

Zero-point amplitude

Next step

Generalization to 0-point function \rightarrow compute on-shell action

- Zero-point amplitude for Minkowski spacetime \mathcal{M} :

$$
A_{0}[\mathcal{M}] \sim \frac{\delta^{(D)}(0)}{\operatorname{Vol~SL}(2, \mathbb{C})} \stackrel{?}{=} \infty
$$

- curved background X :

$$
\mathrm{e}^{-\left(S_{\mathrm{EH}}[X]-S_{\mathrm{EH}}[\mathcal{M}]\right)}=\frac{A_{0}[X]}{A_{0}[\mathcal{M}]} \stackrel{?}{=} \text { finite }
$$

(à la Gibbons-Hawking-York)

- consider $X=$ black hole?

Outline: 3. Crossing symmetry: QFT

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion

Amplitude and Green functions

4-point scattering process

- $p_{a}=\left(E_{a}, \boldsymbol{p}_{a}\right) \in \mathbb{C}, a=1, \ldots, 4$: external momenta
- momentum conservation: $p_{1}+\cdots+p_{4}=0$
- on-shell condition: $p_{a}^{2}=-m_{a}^{2}$

Amplitude and Green functions

4-point scattering process

$\rightarrow p_{a}=\left(E_{a}, \boldsymbol{p}_{a}\right) \in \mathbb{C}, a=1, \ldots, 4$: external momenta
\rightarrow momentum conservation: $p_{1}+\cdots+p_{4}=0$

- on-shell condition: $p_{a}^{2}=-m_{a}^{2}$

Green functions:
off-shell

$$
G\left(p_{1}, \ldots, p_{4}\right)=
$$

$$
\begin{array}{cl}
\text { truncated } & \tilde{G}\left(p_{1}, \ldots, p_{4}\right)=G\left(p_{1}, \ldots, p_{4}\right) \prod_{a=1}^{4}\left(p_{a}^{2}+m_{a}^{2}\right) \\
\text { on-shell } & A\left(p_{1}, \ldots, p_{4}\right)=\lim _{p_{a}^{2} \rightarrow-m_{a}^{2}} \tilde{G}\left(p_{1}, \ldots, p_{4}\right)
\end{array}
$$

QFT: $G=$ sum of Feynman diagrams

Physical amplitudes

Mandelstam variables

$$
s=-\left(p_{1}+p_{2}\right)^{2}, \quad t=-\left(p_{1}+p_{3}\right)^{2}, \quad u=-\left(p_{1}+p_{4}\right)^{2}
$$

mass-shell: $s+t+u=\sum_{a} m_{a}^{2}$

Physical amplitudes

Mandelstam variables

$$
s=-\left(p_{1}+p_{2}\right)^{2}, \quad t=-\left(p_{1}+p_{3}\right)^{2}, \quad u=-\left(p_{1}+p_{4}\right)^{2}
$$

mass-shell: $s+t+u=\sum_{a} m_{a}^{2}$
Physical regions

- S (s-channel): $\quad s \geq \sum_{a} m_{a}^{2}, \quad t, u \leq 0$
- T (t-channel): $\quad t \geq \sum_{a} m_{a}^{2}, \quad s, u \leq 0$
- U(u-channel): $u \geq \sum_{a} m_{a}^{2}, \quad s, t \leq 0$

Physical amplitudes

$$
A_{S, T, U}\left(p_{1}, \ldots, p_{4}\right)=\lim _{p_{\mathrm{a}} \in S, T, U} A\left(p_{1}, \ldots, p_{4}\right)
$$

Mandelstam plane

$p_{a} \in \mathbb{R}$ on-shell

Statement of crossing symmetry

Crossing symmetry

$$
S: 1+2 \rightarrow 3+4
$$

The processes $T: 1+\overline{3} \rightarrow \overline{2}+4$ (and CPT conjugates) are

$$
U: 1+\overline{4} \rightarrow 3+\overline{2}
$$

equivalent under analytic continuation on the complex mass-shell

$$
A_{S}(s, t)=A_{T}(t, s), \quad A_{S}(s, u)=A_{U}(u, s)
$$

Statement of crossing symmetry

Crossing symmetry

$$
S: 1+2 \rightarrow 3+4
$$

The processes $T: 1+\overline{3} \rightarrow \overline{2}+4$ (and CPT conjugates) are

$$
U: 1+\overline{4} \rightarrow 3+\overline{2}
$$

equivalent under analytic continuation on the complex mass-shell

$$
A_{S}(s, t)=A_{T}(t, s), \quad A_{S}(s, u)=A_{U}(u, s)
$$

- looks natural from LSZ: $A_{S, T, U}$ all come from a single function A
- but: not guaranteed that A is analytic in a domain with paths between S, T, U

QFT proof (1)

Outline of proof [Bros-Epstein-Glaser '64-65][Bros '86]:

1. assumptions: $m_{a}^{2}>0$, asymptotic states $=$ stable particles
2. define the "primitive domains"

$$
\begin{aligned}
\Delta_{k}=\bigcap_{A_{\alpha}} & {\left[\left\{\operatorname{lm} P_{(\alpha)} \neq 0,\left(\operatorname{lm} P_{(\alpha)}\right)^{2} \leq 0\right\}\right.} \\
& \cup\left\{\operatorname{Im} P_{(\alpha)}=0,-P_{(\alpha)}^{2}<M_{\alpha}^{2}\right\} \\
& \left.\cap\left\{\operatorname{Im} p_{a}^{i}=0, i=k, \ldots, D-1\right\}\right]
\end{aligned}
$$

$A_{\alpha} \subset\{1, \ldots, n\}, \quad P_{(\alpha)}=\sum_{a \in A_{\alpha}} p_{a}, \quad M_{\alpha}:$ production threshold
In words: p_{a} with k possible complex components s.t. all P_{α} have: 1) non-zero imaginary timelike part, or 2) real momentum squared below multi-particle threshold in channel A_{α}

QFT proof (2)

3. prove analyticity inside Δ_{D} of S-matrix from micro-causality (fields commute at spacelike separations) [Araki, Burgoyne, Ruelle, Steimann, '60-61] problem: $\Delta_{D} \cap$ mass-shell $=\emptyset$
4. compute the "envelope of holomorphy" $\mathcal{H}\left(\Delta_{2}\right)$ (= analytic extension)
$\rightarrow \mathcal{H}\left(\Delta_{2}\right) \cap$ mass-shell $\neq \emptyset$
5. show \exists a path in $\mathcal{H}\left(\Delta_{2}\right) \cap$ mass-shell between all pairs of i ϵ-neighbourhoods of physical regions

QFT proof (2)

3. prove analyticity inside Δ_{D} of S-matrix from micro-causality (fields commute at spacelike separations) [Araki, Burgoyne, Ruelle, Steimann, '60-61] problem: $\Delta_{D} \cap$ mass-shell $=\emptyset$
4. compute the "envelope of holomorphy" $\mathcal{H}\left(\Delta_{2}\right)$ (= analytic extension)
$\rightarrow \mathcal{H}\left(\Delta_{2}\right) \cap$ mass-shell $\neq \emptyset$
5. show \exists a path in $\mathcal{H}\left(\Delta_{2}\right) \cap$ mass-shell between all pairs of i ϵ-neighbourhoods of physical regions

Notes:

- only $\mathcal{H}\left(\Delta_{2}\right)$ is necessary
- 4) and 5) \Leftarrow theory of several complex variables only
- work with the complete S-matrix

Primitive domain and mass-shell

Proof that $\Delta_{D} \cap$ mass-shell $=\emptyset:$

1. complex mass-shell:

$$
\operatorname{Re} p_{a} \cdot \operatorname{Im} p_{a}=0, \quad\left(\operatorname{Re} p_{a}\right)^{2}-\left(\operatorname{Im} p_{a}\right)^{2}+m_{a}^{2}=0
$$

2. if $\operatorname{Im} p_{a}$ timelike, $\left(\operatorname{Im} p_{a}\right)^{2} \leq 0$, then need $\operatorname{Re} p_{a}$ timelike, $\left(\operatorname{Re} p_{a}\right)^{2}<0$, for 2 nd condition, but violates 1 st condition
3. if $\operatorname{Im} p_{a}=0$, then $-P_{(\alpha)}^{2} \geq M_{\alpha}^{2}$

Envelope of holomorphy

More on the envelope of holomorphy:

- consider $f\left(z_{1}, \ldots, z_{n}\right)$ analytic in Δ
- analyticity in several variables \Rightarrow constrain shape of Δ
- if shape not arbitrary: analyticity in $\Delta \Rightarrow$ analyticity in $\mathcal{H}(\Delta)$
- given $\Delta, \mathcal{H}(\Delta)$ is independent of f
- typically: use edge-of-the-wedge theorem (Bogoliubov)

Outline: 4. Crossing symmetry: string theory

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion

String field theory

- field theory (second-quantization)
- rigorous, constructive formulation [hep-th/9206084, Zwiebach]
- make gauge invariance explicit (L_{∞} algebras et al.)
- use standard QFT techniques (renormalization, analyticity. . .) \rightarrow prove consistency (Cutkosky rules, unitarity, soft theorems, background independence. ..) [Sen '14-19]
- help to compute worldsheet scattering amplitudes [Sen '14-19] and effective actions [1912.05463, HE-Maccaferri-Vošmera]
- study backgrounds (= classical solutions), marginal and RR fluxes deformations [1811.00032, Cho-Collier-Yin; 1902.00263, Sen]
- access collective, non-perturbative, thermal, dynamical effects
- worldvolume theory ill-defined for $(p>1)$-branes

String field theory

- field theory (second-quantization)
- rigorous, constructive formulation [hep-th/9206084, Zwiebach]
- make gauge invariance explicit (L_{∞} algebras et al.)
- use standard QFT techniques (renormalization, analyticity. . .) \rightarrow prove consistency (Cutkosky rules, unitarity, soft theorems, background independence. ..) [Sen '14-19]
- help to compute worldsheet scattering amplitudes [Sen '14-19] and effective actions [1912.05463, HE-Maccaferri-Vošmera]
- study backgrounds (= classical solutions), marginal and RR fluxes deformations [1811.00032, Cho-Collier-Yin; 1902.00263, Sen]
- access collective, non-perturbative, thermal, dynamical effects
- worldvolume theory ill-defined for $(p>1)$-branes

To appear: "String Field Theory - A Modern Introduction", Lecture Notes in Physics, Springer

SFT in a nutshell

SFT $=$ standard QFT s.t.:

- infinite number of fields (of all spins)
- infinite number of interactions
- non-local interactions $\propto \mathrm{e}^{-\# k^{2}}$
- reproduce worldsheet amplitudes (if well-defined)
[1703.06410, De Lacroix-HE-Kashyap-Sen-Verma]

SFT in a nutshell

SFT $=$ standard QFT s.t.:

- infinite number of fields (of all spins)
- infinite number of interactions
- non-local interactions $\propto \mathrm{e}^{-\# k^{2}}$
- reproduce worldsheet amplitudes (if well-defined)
[1703.06410, De Lacroix-HE-Kashyap-Sen-Verma]
Consequences of non-locality:
- cannot use position representation
- cannot use assumptions from local QFT (micro-causality...)
- cannot derive analyticity like in QFT

SFT in a nutshell

SFT $=$ standard QFT s.t.:

- infinite number of fields (of all spins)
- infinite number of interactions
- non-local interactions $\propto \mathrm{e}^{-\# k^{2}}$
- reproduce worldsheet amplitudes (if well-defined)
[1703.06410, De Lacroix-HE-Kashyap-Sen-Verma]
Consequences of non-locality:
- cannot use position representation
- cannot use assumptions from local QFT (micro-causality...)
- cannot derive analyticity like in QFT
\rightarrow study Green function singularities from Feynman diagrams in momentum space

Action and Feynman diagrams

- gauge-fixed action

$$
S=\frac{1}{2}\langle\Psi| c_{0}^{-} c_{0}^{+} L_{0}^{+}|\Psi\rangle+\sum_{g, n \geq 0} \frac{\hbar^{g} g_{s}^{2 g-2+n}}{n!} \mathcal{V}_{g, n}\left(\Psi^{n}\right)
$$

Action and Feynman diagrams

- gauge-fixed action

$$
S=\frac{1}{2}\langle\Psi| c_{0}^{-} c_{0}^{+} L_{0}^{+}|\Psi\rangle+\sum_{g, n \geq 0} \frac{\hbar^{g} g_{s}^{2 g-2+n}}{n!} \mathcal{V}_{g, n}\left(\Psi^{n}\right)
$$

- propagator

$$
\left\langle A_{1}\right| \frac{b_{0}^{+}}{L_{0}^{+}} b_{0}^{-}\left|A_{2}\right\rangle=A_{1}-A_{2}
$$

- fundamental g-loop n-point vertex

defined s.t. sum of all graphs \Rightarrow recover worldsheet amplitudes

Example

Example

Momentum representation (1)

- string field Fourier expansion

$$
|\Psi\rangle=\sum_{A} \int \frac{\mathrm{~d}^{D} k}{(2 \pi)^{D}} \phi_{A}(k)|A, k\rangle
$$

k: D-dimensional momentum
A: discrete labels (Lorentz indices, group repr., KK modes...)

- 1PI action

$$
\begin{aligned}
S= & \int \mathrm{d}^{D} k \phi_{A}(k) K_{A B}(k) \phi_{B}(-k) \\
& +\sum_{n} \int \mathrm{~d}^{D} k_{1} \cdots \mathrm{~d}^{D} k_{n} V_{A_{1}, \ldots, A_{n}}^{(n)}\left(k_{1}, \ldots, k_{n}\right) \phi_{A_{1}}\left(k_{1}\right) \cdots \phi_{A_{n}}\left(k_{n}\right)
\end{aligned}
$$

Momentum representation (2)

Propagator

$$
K_{A B}(k)^{-1}=\frac{-\mathrm{i} M_{A B}}{k^{2}+m_{A}^{2}} Q_{A}(k)
$$

- $M_{A B}$ mixing matrix for states of equal mass
- Q_{A} polynomial

Momentum representation (3)

Vertices

$$
\begin{aligned}
&-\mathrm{i} V_{A_{1}, \ldots, A_{n}}^{(n)}\left(k_{1}, \ldots, k_{n}\right)=-\mathrm{i} \int \mathrm{~d} \mathrm{e}^{-g_{i j}^{\left\{A_{a}\right\}}(t) k_{i} \cdot k_{j}-c \sum_{a=1}^{n} m_{a}^{2}} \\
& \times P_{A_{1}, \ldots, A_{n}}\left(k_{1}, \ldots, k_{n} ; t\right)
\end{aligned}
$$

- t moduli parameters
- $P_{\left\{A_{a}\right\}}$ polynomial
- $c>0 \rightarrow$ damping in sum over states
- $g_{i j}$ positive definite
- no singularity for $k_{i} \in \mathbb{C}$ (finite)
- $\lim _{k^{0} \rightarrow \pm \mathrm{i} \infty} V^{(n)}=0$
- $\lim _{k^{0} \rightarrow \pm \infty} V^{(n)}=\infty$

Green function

Truncated Green function $=$ sum of Feynman diagrams of the form

$$
\mathcal{F}\left(p_{1}, \ldots, p_{n}\right) \sim \int \mathrm{d} T \prod_{s} \mathrm{~d}^{D} \ell_{s} \mathrm{e}^{-G_{r s}(T) \ell_{r} \cdot \ell_{s}-2 H_{r a}(T) \ell_{r} \cdot p_{a}-F_{a b}(T) p_{a} \cdot p_{b}}
$$

$$
\times \prod_{i} \frac{1}{k_{i}^{2}+m_{i}^{2}} \mathcal{P}\left(p_{\mathrm{a}}, \ell_{r} ; T\right)
$$

T, moduli parameters, \mathcal{P}, polynomial in $\left(p_{a}, \ell_{r}\right)$

- momenta:
\checkmark external $\left\{p_{a}\right\}>$ internal $\left\{k_{i}\right\} \quad$ loop $\left\{\ell_{s}\right\}$
$k_{i}=$ linear combination of $\left\{p_{a}, \ell_{s}\right\}$
- $G_{r s}$ positive definite
- integrations over spatial loop momenta ℓ_{r} converge
- integrations over loop energies ℓ_{r}^{0} diverge

Momentum integration

Prescription $=$ generalized Wick rotation [1604.01783, Pius-Sen]:

1. define Green function for Euclidean internal/external momenta
2. analytic continuation of external energies + integration contour s.t.

- keep poles on the same side
- keep ends at $\pm \mathrm{i} \infty$
\rightarrow analyticity for $\boldsymbol{p}_{a} \in \mathbb{R}, p_{a}^{0}$ in first quadrant $\operatorname{Im} p_{a}^{0}>0, \operatorname{Re} p_{a}^{0} \geq 0$

Momentum integration

Prescription $=$ generalized Wick rotation [1604.01783, Pius-Sen]:

1. define Green function for Euclidean internal/external momenta
2. analytic continuation of external energies + integration contour s.t.

- keep poles on the same side
- keep ends at $\pm \mathrm{i} \infty$
\rightarrow analyticity for $\boldsymbol{p}_{a} \in \mathbb{R}, p_{a}^{0}$ in first quadrant $\operatorname{Im} p_{a}^{0}>0, \operatorname{Re} p_{a}^{0} \geq 0$

Momentum integration

Prescription $=$ generalized Wick rotation [1604.01783, Pius-Sen]:

1. define Green function for Euclidean internal/external momenta
2. analytic continuation of external energies + integration contour s.t.

- keep poles on the same side
- keep ends at $\pm \mathrm{i} \infty$
\rightarrow analyticity for $\boldsymbol{p}_{a} \in \mathbb{R}, p_{a}^{0}$ in first quadrant $\operatorname{Im} p_{a}^{0}>0, \operatorname{Re} p_{a}^{0} \geq 0$

\Rightarrow Cutkosky rules, unitarity, spacetime and moduli space i ϵ-prescriptions [Pius, Sen]
Timelike Liouville theory [1905.12689, Bautista-Dabholkar-HE]

Analyticity for string theory (1)

Result

Analyticity inside Δ_{2} of n-point superstring Green functions at all loop orders:

- implies crossing symmetry for $n=4$
- identical analyticity properties for QFT and string theory

Analyticity for string theory (1)

Result

Analyticity inside Δ_{2} of n-point superstring Green functions at all loop orders:

- implies crossing symmetry for $n=4$
- identical analyticity properties for QFT and string theory

Comments:

- Feynman graphs \rightarrow perturbative computations
- valid for states with any spin
- technical assumptions: mass gap, stable external states
- regularization of massless states: removes IR non-analyticity (identical to QFT)

Analyticity for string theory (2)

Method to study singularity:

1. start with some $p_{a}=p_{a}^{(1)}, \ell_{r}^{0} \in i \mathbb{R}, \ell_{r} \in \mathbb{R}$ s.t. no singularity
2. find a path $p_{a}=p_{a}^{(1)} \rightarrow$ desired $p_{a}=p_{a}^{(2)}$
3. deform the integral contour as the poles move
4. assume \exists singularity $=$ on-shell internal propagator pinching $=$ collision of two poles from opposite sides
5. analyze reduced diagram, display an inconsistency

Analyticity for string theory (2)

Method to study singularity:

1. start with some $p_{a}=p_{a}^{(1)}, \ell_{r}^{0} \in i \mathbb{R}, \ell_{r} \in \mathbb{R}$ s.t. no singularity
2. find a path $p_{a}=p_{a}^{(1)} \rightarrow$ desired $p_{a}=p_{a}^{(2)}$
3. deform the integral contour as the poles move
4. assume \exists singularity $=$ on-shell internal propagator pinching $=$ collision of two poles from opposite sides
5. analyze reduced diagram, display an inconsistency

Proceed by steps:

1. analyticity in Δ_{1} : go from $p_{a}=0$ to desired $\operatorname{Re} p_{a}$ and $\operatorname{Im} p_{a}^{0}$ (keep $\operatorname{Im} \boldsymbol{p}_{a}=0$)
2. analyticity in Δ_{2} : go from $p_{a} \in \Delta_{1}$ to desired $\operatorname{Im} p_{a}^{1}$ (keep $\left.\operatorname{Im} p_{a}^{i}=0 \forall i \geq 2\right)$

First step

- $p_{a}^{0} \in \mathbb{C}, \boldsymbol{p}_{a} \in \mathbb{R}$
- pinching implies reduced graph:

$k_{i}^{2}=-m_{i}^{2}$, arrow $=$ sign of k_{i}^{0}
- $\boldsymbol{p}_{\mathrm{a}}, \ell_{r} \in \mathbb{R} \Rightarrow \boldsymbol{k}_{i} \in \mathbb{R}$, then $k_{i}^{2}=-m_{i}^{2} \Rightarrow k_{i} \in \mathbb{R}$
- one can prove $\forall i: k_{i}^{0}>0$
- implies

$$
P_{(\alpha)}=\sum_{i} k_{i} \in \mathbb{R}, \quad p_{a}^{2}=-m_{a}^{2} \quad \Rightarrow \quad-P_{(\alpha)}^{2} \geq M_{\alpha}^{2}
$$

\rightarrow contradiction - one must have $-P_{(\alpha)}^{2}<M_{\alpha}^{2}$

Second step

- $p_{a}^{11}=\left(p_{a}^{0}, p_{a}^{1}\right) \in \mathbb{C}, p_{a}^{\perp} \in \mathbb{R}$
- pinching implies reduced graph:

arrow $=\operatorname{sign}$ of $\operatorname{Im} k_{i}^{1}$
- one can prove $\forall i: \operatorname{lm} k_{i}^{1}>0$, and

$$
k_{i}^{2}=-m_{i}^{2} \Rightarrow \operatorname{Im} k_{i}^{\|} \in W^{+} \Rightarrow \operatorname{Im} P_{(\alpha)}=\sum_{i} \operatorname{Im} k_{i} \in W^{+}
$$

\rightarrow contradiction - one must have $\operatorname{Im} P_{(\alpha)}$ timelike

Outline: 5. Conclusion

Introduction
Two-point amplitude
Crossing symmetry: QFT
Crossing symmetry: string theory

Conclusion

Conclusion

Results:

- tree-level 2-point amplitude computation consistent with QFT
- analyticity of superstring n-point amplitudes in Δ_{2}
- proof of crossing symmetry for 4-point superstring amplitudes at the same level as in QFT
- show that, in some sense, string theory behaves like local QFT
- new proof of analyticity valid for more general QFTs

Conclusion

Results:

- tree-level 2-point amplitude computation consistent with QFT
- analyticity of superstring n-point amplitudes in Δ_{2}
- proof of crossing symmetry for 4-point superstring amplitudes at the same level as in QFT
- show that, in some sense, string theory behaves like local QFT
- new proof of analyticity valid for more general QFTs

Outlook:

- tree-level 0-point function for generic background
- CPT theorem
- analyticity in Δ_{D}
- analyticity in $\mathcal{H}\left(\Delta_{2}\right)$ just from Feynman diagrams

